Paul's Online Notes
Paul's Online Notes
Home / Calculus I / Integrals / Computing Indefinite Integrals
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 5-2 : Computing Indefinite Integrals

For problems 1 – 21 evaluate the given integral.

  1. \(\displaystyle \int{{4{x^6} - 2{x^3} + 7x - 4\,dx}}\) Solution
  2. \(\displaystyle \int{{{z^7} - 48{z^{11}} - 5{z^{16}}\,dz}}\) Solution
  3. \(\displaystyle \int{{10{t^{ - 3}} + 12{t^{ - 9}} + 4{t^3}\,dt}}\) Solution
  4. \(\displaystyle \int{{{w^{ - 2}} + 10{w^{ - 5}} - 8\,dw}}\) Solution
  5. \(\displaystyle \int{{12\,dy}}\) Solution
  6. \(\displaystyle \int{{\sqrt[3]{w} + 10\,\,\sqrt[5]{{{w^3}}}\,dw}}\) Solution
  7. \(\displaystyle \int{{\sqrt {{x^7}} - 7\,\sqrt[6]{{{x^5}}} + 17\,\,\sqrt[3]{{{x^{10}}}}\,dx}}\) Solution
  8. \(\displaystyle \int{{\frac{4}{{{x^2}}} + 2 - \frac{1}{{8{x^3}}}\,dx}}\) Solution
  9. \(\displaystyle \int{{\frac{7}{{3{y^6}}} + \frac{1}{{{y^{10}}}} - \frac{2}{{\sqrt[3]{{{y^4}}}}}\,dy}}\) Solution
  10. \(\displaystyle \int{{\left( {{t^2} - 1} \right)\left( {4 + 3t} \right)\,dt}}\) Solution
  11. \(\displaystyle \int{{\sqrt z \left( {{z^2} - \frac{1}{{4z}}} \right)\,dz}}\) Solution
  12. \(\displaystyle \int{{\frac{{{z^8} - 6{z^5} + 4{z^3} - 2}}{{{z^4}}}\,dz}}\) Solution
  13. \(\displaystyle \int{{\frac{{{x^4} - \sqrt[3]{x}}}{{6\sqrt x }}\,dx}}\) Solution
  14. \(\displaystyle \int{{\sin \left( x \right) + 10{{\csc }^2}\left( x \right)\,dx}}\) Solution
  15. \(\displaystyle \int{{2\cos \left( w \right) - \sec \left( w \right)\tan \left( w \right)\,dw}}\) Solution
  16. \(\displaystyle \int{{12 + \csc \left( \theta \right)\left[ {\sin \left( \theta \right) + \csc \left( \theta \right)} \right]\,d\theta }}\) Solution
  17. \(\displaystyle \int{{4{{\bf{e}}^z} + 15 - \frac{1}{{6z}}\,dz}}\) Solution
  18. \(\displaystyle \int{{{t^3} - \frac{{{{\bf{e}}^{ - t}} - 4}}{{{{\bf{e}}^{ - t}}}}\,dt}}\) Solution
  19. \(\displaystyle \int{{\frac{6}{{{w^3}}} - \frac{2}{w}\,dw}}\) Solution
  20. \(\displaystyle \int{{\frac{1}{{1 + {x^2}}} + \frac{{12}}{{\sqrt {1 - {x^2}} }}\,dx}}\) Solution
  21. \(\displaystyle \int{{6\cos \left( z \right) + \frac{4}{{\sqrt {1 - {z^2}} }}\,dz}}\) Solution
  22. Determine \(f\left( x \right)\) given that \(f'\left( x \right) = 12{x^2} - 4x\) and \(f\left( { - 3} \right) = 17\). Solution
  23. Determine \(g\left( z \right)\) given that \(g'\left( z \right) = 3{z^3} + \frac{7}{{2\sqrt z }} - {{\bf{e}}^z}\) and \(g\left( 1 \right) = 15 - {\bf{e}}\). Solution
  24. Determine \(h\left( t \right)\) given that \(h''\left( t \right) = 24{t^2} - 48t + 2\), \(h\left( 1 \right) = - 9\) and \(h\left( { - 2} \right) = - 4\). Solution