Paul's Online Notes
Paul's Online Notes
Home / Calculus I / Limits / Limit Properties
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 2-4 : Limit Properties

  1. Given \(\mathop {\lim }\limits_{x \to 8} f\left( x \right) = - 9\), \(\mathop {\lim }\limits_{x \to 8} g\left( x \right) = 2\) and \(\mathop {\lim }\limits_{x \to 8} h\left( x \right) = 4\) use the limit properties given in this section to compute each of the following limits. If it is not possible to compute any of the limits clearly explain why not.
    1. \(\mathop {\lim }\limits_{x \to 8} \left[ {2f\left( x \right) - 12h\left( x \right)} \right]\)
    2. \(\mathop {\lim }\limits_{x \to 8} \left[ {3h\left( x \right) - 6} \right]\)
    3. \(\mathop {\lim }\limits_{x \to 8} \left[ {g\left( x \right)h\left( x \right) - f\left( x \right)} \right]\)
    4. \(\mathop {\lim }\limits_{x \to 8} \left[ {f\left( x \right) - g\left( x \right) + h\left( x \right)} \right]\)
    Solution
  2. Given \(\mathop {\lim }\limits_{x \to - 4} f\left( x \right) = 1\), \(\mathop {\lim }\limits_{x \to - 4} g\left( x \right) = 10\) and \(\mathop {\lim }\limits_{x \to - 4} h\left( x \right) = - 7\) use the limit properties given in this section to compute each of the following limits. If it is not possible to compute any of the limits clearly explain why not.
    1. \(\displaystyle \mathop {\lim }\limits_{x \to - 4} \left[ {\frac{{f\left( x \right)}}{{g\left( x \right)}} - \frac{{h\left( x \right)}}{{f\left( x \right)}}} \right]\)
    2. \(\mathop {\lim }\limits_{x \to - 4} \left[ {f\left( x \right)g\left( x \right)h\left( x \right)} \right]\)
    3. \(\displaystyle \mathop {\lim }\limits_{x \to - 4} \left[ {\frac{1}{{h\left( x \right)}} + \frac{{3 - f\left( x \right)}}{{g\left( x \right) + h\left( x \right)}}} \right]\)
    4. \(\displaystyle \mathop {\lim }\limits_{x \to - 4} \left[ {2h\left( x \right) - \frac{1}{{h\left( x \right) + 7f\left( x \right)}}} \right]\)
    Solution
  3. Given \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 6\), \(\mathop {\lim }\limits_{x \to 0} g\left( x \right) = - 4\) and \(\mathop {\lim }\limits_{x \to 0} h\left( x \right) = - 1\) use the limit properties given in this section to compute each of the following limits. If it is not possible to compute any of the limits clearly explain why not.
    1. \(\mathop {\lim }\limits_{x \to 0} {\left[ {f\left( x \right) + h\left( x \right)} \right]^3}\)
    2. \(\mathop {\lim }\limits_{x \to 0} \sqrt {g\left( x \right)h\left( x \right)} \)
    3. \(\mathop {\lim }\limits_{x \to 0} \sqrt[3]{{11 + {{\left[ {g\left( x \right)} \right]}^2}}}\)
    4. \(\displaystyle \mathop {\lim }\limits_{x \to 0} \sqrt {\frac{{f\left( x \right)}}{{h\left( x \right) - g\left( x \right)}}} \)
    Solution

For each of the following limits use the limit properties given in this section to compute the limit. At each step clearly indicate the property being used. If it is not possible to compute any of the limits clearly explain why not.

  1. \(\mathop {\lim }\limits_{t \to \, - 2} \left( {14 - 6t + {t^3}} \right)\) Solution
  2. \(\mathop {\lim }\limits_{x \to 6} \left( {3{x^2} + 7x - 16} \right)\) Solution
  3. \(\displaystyle \mathop {\lim }\limits_{w \to 3} \frac{{{w^2} - 8w}}{{4 - 7w}}\) Solution
  4. \(\displaystyle \mathop {\lim }\limits_{x \to \, - 5} \frac{{x + 7}}{{{x^2} + 3x - 10}}\) Solution
  5. \(\mathop {\lim }\limits_{z \to 0} \sqrt {{z^2} + 6} \) Solution
  6. \(\mathop {\lim }\limits_{x \to 10} \left( {4x + \sqrt[3]{{x - 2}}} \right)\) Solution