Pauls Online Notes
Pauls Online Notes
Home / Calculus I / Applications of Integrals
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.
Assignment Problems Notice
Please do not email me to get solutions and/or answers to these problems. I will not give them out under any circumstances nor will I respond to any requests to do so. The intent of these problems is for instructors to use them for assignments and having solutions/answers easily available defeats that purpose.
(for use by instructors) to accompany the Applications of Integrals chapter of the notes for Paul Dawkins Calculus I course at Lamar University." Visible="false" runat="server" />

Chapter 6 : Applications of Integrals

Here are a set of assignment problems for the Applications of Integrals chapter of the Calculus I notes. Please note that these problems do not have any solutions available. These are intended mostly for instructors who might want a set of problems to assign for turning in. Having solutions available (or even just final answers) would defeat the purpose the problems.

If you are looking for some practice problems (with solutions available) please check out the Practice Problems. There you will find a set of problems that should give you quite a bit practice.

Here is a list of all the sections for which assignment problems have been written as well as a brief description of the material covered in the notes for that particular section.

Average Function Value – In this section we will look at using definite integrals to determine the average value of a function on an interval. We will also give the Mean Value Theorem for Integrals.

Area Between Curves – In this section we’ll take a look at one of the main applications of definite integrals in this chapter. We will determine the area of the region bounded by two curves.

Volumes of Solids of Revolution / Method of Rings – In this section, the first of two sections devoted to finding the volume of a solid of revolution, we will look at the method of rings/disks to find the volume of the object we get by rotating a region bounded by two curves (one of which may be the \(x\) or \(y\)-axis) around a vertical or horizontal axis of rotation.

Volumes of Solids of Revolution / Method of Cylinders – In this section, the second of two sections devoted to finding the volume of a solid of revolution, we will look at the method of cylinders/shells to find the volume of the object we get by rotating a region bounded by two curves (one of which may be the \(x\) or \(y\)-axis) around a vertical or horizontal axis of rotation.

More Volume Problems – In the previous two sections we looked at solids that could be found by treating them as a solid of revolution. Not all solids can be thought of as solids of revolution and, in fact, not all solids of revolution can be easily dealt with using the methods from the previous two sections. So, in this section we’ll take a look at finding the volume of some solids that are either not solids of revolutions or are not easy to do as a solid of revolution.

Work – In this section we will look at is determining the amount of work required to move an object subject to a force over a given distance.