Pauls Online Notes
Pauls Online Notes
Home / Calculus II / Vectors / Dot Product
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.
Assignment Problems Notice
Please do not email me to get solutions and/or answers to these problems. I will not give them out under any circumstances nor will I respond to any requests to do so. The intent of these problems is for instructors to use them for assignments and having solutions/answers easily available defeats that purpose.

Section 5-3 : Dot Product

For problems 1 – 5 determine the dot product, \(\vec a\centerdot \vec b\).

  1. \(\vec a = 9\vec i - 8\vec k\), \(\vec b = \left\langle {3, - 2,1} \right\rangle \)
  2. \(\vec a = \left\langle {4, - 1,0,5} \right\rangle \) , \(\vec b = \left\langle {3,0, - 10,6} \right\rangle \)
  3. \(\vec a = \vec i - 5\vec j - 2\vec k\) , \(\vec b = - 4\vec i + 2\vec j + 8\vec k\)
  4. \(\displaystyle \left\| {\vec a} \right\| = \frac{1}{4}\), \(\displaystyle \left\| {\vec b} \right\| = \frac{9}{4}\) and the angle between the two vectors is \(\theta = \pi \).
  5. \(\displaystyle \left\| {\vec a} \right\| = 24\), \(\left\| {\vec b} \right\| = 9\) and the angle between the two vectors is \(\displaystyle \theta = \frac{{2\pi }}{7}\).

For problems 6 – 8 determine the angle between the two vectors.

  1. \(\vec p = 9\vec i - \vec j\), \(\vec q = - 3\vec i - 6\vec j\)
  2. \(\vec a = \left\langle {4,0, - 3} \right\rangle \), \(\vec b = 2\vec i + 10\vec j - 11\vec k\)
  3. \(\vec w = \left\langle {8,3, - 1, - 4} \right\rangle \), \(\vec v = \left\langle { - 1,9,4, - 8} \right\rangle \)

For problems 9 – 12 determine if the two vectors are parallel, orthogonal or neither.

  1. \(\vec q = 7\vec i - 14\vec j - 21\vec k\), \(\vec p = \left\langle { - 4,8,12} \right\rangle \)
  2. \(\vec u = \left\langle {5,0, - 2} \right\rangle \), \(\vec q = \left\langle {4, - 7,10} \right\rangle \)
  3. \(\vec a = 9\vec i - \vec j + 5\vec k\), \(\vec b = - 2\vec i + 7\vec j + \vec k\)
  4. \(\vec v = \left\langle { - 1,3,1,5} \right\rangle \), \(\vec w = \left\langle { - 8,3, - 7, - 2} \right\rangle \)
  5. Given that \(\vec a\centerdot \vec b = - 6\), \(\left\| {\vec a} \right\| = 4.3\) and the angle between \(\vec a\) and \(\vec b\) is \(\displaystyle \theta = \frac{\pi }{6}\) determine if \(\vec b\) is a unit vector or note.

For problems 14 & 15 determine the value of b for which the two vectors will be orthogonal.

  1. \(\vec u = \left\langle {3, - 1,6} \right\rangle \), \(\vec v = \left\langle {3, - 2b,1} \right\rangle \)
  2. \(\vec u = \left\langle {1 - b,4, - 2} \right\rangle \), \(\vec v = \left\langle {b,6,3b} \right\rangle \)
  3. Given \(\vec a = \vec i + 3\vec j - 2\vec k\) and \(\vec b = - 3\vec i - 4\vec j + 7\vec k\) compute \({{\mathop{\rm proj}\nolimits} _{\,\vec a}}\,\vec b\).
  4. Given \(\vec a = \vec i + 3\vec j - 2\vec k\) and \(\vec b = - 3\vec i - 4\vec j + 7\vec k\) compute \({{\mathop{\rm proj}\nolimits} _{\,\vec b}}\,\vec a\).
  5. Given \(\vec p = \left\langle {5, - 2,1} \right\rangle \) and \(\vec q = \left\langle {0,4,8} \right\rangle \) compute \({{\mathop{\rm proj}\nolimits} _{\,\vec p}}\,\vec q\).
  6. Given \(\vec u = \left\langle {1,3,0, - 2} \right\rangle \) and \(\vec w = \left\langle { - 2,2,4,1} \right\rangle \) compute \({{\mathop{\rm proj}\nolimits} _{\,\vec w}}\,\vec u\).
  7. Determine the direction cosines and direction angles for \(\vec r = \left\langle {5,2, - 7} \right\rangle \).
  8. Determine the direction cosines and direction angles for \(\displaystyle \vec r = \left\langle {\frac{1}{2}, - \frac{3}{4},\frac{5}{2}} \right\rangle \).
  9. Prove the property \(\left( {c\vec v} \right)\centerdot \vec w = \vec v\centerdot \left( {c\vec w} \right)\).
  10. Prove the property \(\vec v\centerdot \vec w = \vec w\centerdot \vec v\).
  11. Prove the property \(\vec v\centerdot \vec 0 = 0\).
  12. Prove the property \(\vec v\centerdot \vec v = {\left\| {\vec v} \right\|^2}\).