Pauls Online Notes
Pauls Online Notes
Home / Calculus II / Integration Techniques
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.
Assignment Problems Notice
Please do not email me to get solutions and/or answers to these problems. I will not give them out under any circumstances nor will I respond to any requests to do so. The intent of these problems is for instructors to use them for assignments and having solutions/answers easily available defeats that purpose.

Chapter 1 : Integration Techniques

Here are a set of assignment problems for the Integration Techniques chapter of the Calculus II notes. Please note that these problems do not have any solutions available. These are intended mostly for instructors who might want a set of problems to assign for turning in. Having solutions available (or even just final answers) would defeat the purpose the problems.

If you are looking for some practice problems (with solutions available) please check out the Practice Problems. There you will find a set of problems that should give you quite a bit practice.

Here is a list of all the sections for which assignment problems have been written as well as a brief description of the material covered in the notes for that particular section.

Integration by Parts – In this section we will be looking at Integration by Parts. Of all the techniques we’ll be looking at in this class this is the technique that students are most likely to run into down the road in other classes. We also give a derivation of the integration by parts formula.

Integrals Involving Trig Functions – In this section we look at integrals that involve trig functions. In particular we concentrate integrating products of sines and cosines as well as products of secants and tangents. We will also briefly look at how to modify the work for products of these trig functions for some quotients of trig functions.

Trig Substitutions – In this section we will look at integrals (both indefinite and definite) that require the use of a substitutions involving trig functions and how they can be used to simplify certain integrals.

Partial Fractions – In this section we will use partial fractions to rewrite integrands into a form that will allow us to do integrals involving some rational functions.

Integrals Involving Roots – In this section we will take a look at a substitution that can, on occasion, be used with integrals involving roots.

Integrals Involving Quadratics – In this section we are going to look at some integrals that involve quadratics for which the previous techniques won’t work right away. In some cases, manipulation of the quadratic needs to be done before we can do the integral. We will see several cases where this is needed in this section.

Integration Strategy – In this section we give a general set of guidelines for determining how to evaluate an integral. The guidelines give here involve a mix of both Calculus I and Calculus II techniques to be as general as possible. Also note that there really isn’t one set of guidelines that will always work and so you always need to be flexible in following this set of guidelines.

Improper Integrals – In this section we will look at integrals with infinite intervals of integration and integrals with discontinuous integrands in this section. Collectively, they are called improper integrals and as we will see they may or may not have a finite (i.e. not infinite) value. Determining if they have finite values will, in fact, be one of the major topics of this section.

Comparison Test for Improper Integrals – It will not always be possible to evaluate improper integrals and yet we still need to determine if they converge or diverge (i.e. if they have a finite value or not). So, in this section we will use the Comparison Test to determine if improper integrals converge or diverge.

Approximating Definite Integrals – In this section we will look at several fairly simple methods of approximating the value of a definite integral. It is not possible to evaluate every definite integral (i.e. because it is not possible to do the indefinite integral) and yet we may need to know the value of the definite integral anyway. These methods allow us to at least get an approximate value which may be enough in a lot of cases.