Pauls Online Notes
Pauls Online Notes
Home / Calculus III / Multiple Integrals
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.
Assignment Problems Notice
Please do not email me to get solutions and/or answers to these problems. I will not give them out under any circumstances nor will I respond to any requests to do so. The intent of these problems is for instructors to use them for assignments and having solutions/answers easily available defeats that purpose.

Chapter 4 : Multiple Integrals

Here are a set of assignment problems for the Multiple Integrals chapter of the Calculus III notes. Please note that these problems do not have any solutions available. These are intended mostly for instructors who might want a set of problems to assign for turning in. Having solutions available (or even just final answers) would defeat the purpose the problems.

If you are looking for some practice problems (with solutions available) please check out the Practice Problems. There you will find a set of problems that should give you quite a bit practice.

Here is a list of all the sections for which assignment problems have been written as well as a brief description of the material covered in the notes for that particular section.

Double Integrals – In this section we will formally define the double integral as well as giving a quick interpretation of the double integral.

Iterated Integrals – In this section we will show how Fubini’s Theorem can be used to evaluate double integrals where the region of integration is a rectangle.

Double Integrals over General Regions – In this section we will start evaluating double integrals over general regions, i.e. regions that aren’t rectangles. We will illustrate how a double integral of a function can be interpreted as the net volume of the solid between the surface given by the function and the \(xy\)-plane.

Double Integrals in Polar Coordinates – In this section we will look at converting integrals (including \(dA\)) in Cartesian coordinates into Polar coordinates. The regions of integration in these cases will be all or portions of disks or rings and so we will also need to convert the original Cartesian limits for these regions into Polar coordinates.

Triple Integrals – In this section we will define the triple integral. We will also illustrate quite a few examples of setting up the limits of integration from the three dimensional region of integration. Getting the limits of integration is often the difficult part of these problems.

Triple Integrals in Cylindrical Coordinates – In this section we will look at converting integrals (including \(dV\)) in Cartesian coordinates into Cylindrical coordinates. We will also be converting the original Cartesian limits for these regions into Cylindrical coordinates.

Triple Integrals in Spherical Coordinates – In this section we will look at converting integrals (including \(dV\)) in Cartesian coordinates into Spherical coordinates. We will also be converting the original Cartesian limits for these regions into Spherical coordinates.

Change of Variables – In previous sections we’ve converted Cartesian coordinates in Polar, Cylindrical and Spherical coordinates. In this section we will generalize this idea and discuss how we convert integrals in Cartesian coordinates into alternate coordinate systems. Included will be a derivation of the \(dV\) conversion formula when converting to Spherical coordinates.

Surface Area – In this section we will show how a double integral can be used to determine the surface area of the portion of a surface that is over a region in two dimensional space.

Area and Volume Revisited – In this section we summarize the various area and volume formulas from this chapter.