Precise Definition: We say \(\lim_{x \to a} f(x) = L \) if for every \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that whenever \(0 < |x - a| < \delta \) then \(|f(x) - L| < \varepsilon \).

“Working” Definition: We say \(\lim_{x \to a} f(x) = L \) if we can make \(f(x) \) as close to \(L \) as we want by taking \(x \) sufficiently close to \(a \) (on either side of \(a \)) without letting \(x = a \).

Right hand limit: \(\lim_{x \to a^+} f(x) = L \). This has the same definition as the limit except it requires \(x > a \).

Left hand limit: \(\lim_{x \to a^-} f(x) = L \). This has the same definition as the limit except it requires \(x < a \).

Relationship between the limit and one-sided limits
\[
\lim_{x \to a^-} f(x) = L \Rightarrow \lim_{x \to a} f(x) = L \quad \text{provided \(f(x) \) is continuous at \(a \)} \]
\[
\lim_{x \to a^+} f(x) = L \Rightarrow \lim_{x \to a} f(x) = L \quad \text{provided \(f(x) \) is continuous at \(a \)} \]

There is a similar definition for \(\lim_{x \to x_0} f(x) = L \) except we require \(x \) large or negative.

Infinite Limit: We say \(\lim_{x \to a} f(x) = \infty \) if we can make \(f(x) \) arbitrarily large (and positive) by taking \(x \) sufficiently close to \(a \) (on either side of \(a \)) without letting \(x = a \).

There is a similar definition for \(\lim_{x \to a} f(x) = -\infty \) except we make \(f(x) \) arbitrarily large and negative.

Basic Limit Evaluations at \(\pm \infty \)

Note: \(\text{sgn}(a) = 1 \) if \(a > 0 \) and \(\text{sgn}(a) = -1 \) if \(a < 0 \).

Calculus Techniques

L'Hospital's Rule
If \(\lim_{x \to a} f(x) = 0 \) or \(\lim_{x \to a} g(x) = 0 \) then,
\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}
\]

Polynomials at Infinity
\(p(x) \) and \(q(x) \) are polynomials. To compute
\[
\lim_{x \to \pm \infty} \frac{p(x)}{q(x)} = \frac{\text{leading coefficient of } p(x)}{\text{leading coefficient of } q(x)}
\]

Piecewise Function
\[
\lim_{x \to a} f(x) = \begin{cases} \frac{x^2 + 5}{1 - 3x} & \text{if } x > -2 \\ \frac{x^2 - 9}{x - 2} & \text{if } x < 2 \end{cases}
\]

Intermediate Value Theorem
Suppose that \(f(x) \) is continuous on \([a, b]\) and let \(M \) be any number between \(f(a) \) and \(f(b) \).
Then there exists a number \(c \) such that \(a < c < b \) and \(f(c) = M \).

Some Continuous Functions

1. \(f(x) = x^a \) for all \(x \).
2. \(\text{sgn}(a) = 1 \) if \(a > 0 \) and \(\text{sgn}(a) = -1 \) if \(a < 0 \).
3. \(\text{sgn}(a) = 1 \) if \(a > 0 \) and \(\text{sgn}(a) = -1 \) if \(a < 0 \).
4. \(\text{sgn}(a) = 1 \) if \(a > 0 \) and \(\text{sgn}(a) = -1 \) if \(a < 0 \).
5. \(\text{sgn}(a) = 1 \) if \(a > 0 \) and \(\text{sgn}(a) = -1 \) if \(a < 0 \).