Table of Contents

Introduction

- Integration Techniques ... 6
 - Introduction ... 6
 - Integration by Parts ... 6
 - Integrals Involving Trig Functions 7
 - Trig Substitutions ... 8
 - Partial Fractions ... 9
 - Integrals Involving Roots .. 10
 - Integrals Involving Quadratics .. 10
 - Integration Strategy .. 11
 - Improper Integrals ... 11
 - Comparison Test for Improper Integrals 12
 - Approximating Definite Integrals 12

- Applications of Integrals ... 13
 - Introduction ... 13
 - Arc Length .. 14
 - Surface Area ... 14
 - Center of Mass .. 15
 - Hydrostatic Pressure and Force 15
 - Probability .. 17

- Parametric Equations and Polar Coordinates 18
 - Introduction ... 18
 - Parametric Equations and Curves 19
 - Tangents with Parametric Equations 20
 - Area with Parametric Equations 20
 - Arc Length with Parametric Equations 21
 - Surface Area with Parametric Equations 21
 - Polar Coordinates .. 22
 - Tangents with Polar Coordinates 23
 - Area with Polar Coordinates .. 23
 - Arc Length with Polar Coordinates 24
 - Surface Area with Polar Coordinates 24
 - Arc Length and Surface Area Revisited 24

- Sequences and Series ... 24
 - Introduction ... 24
 - Sequences .. 25
 - More on Sequences .. 26
 - Series – The Basics ... 27
 - Series – Convergence/Divergence 27
 - Series – Special Series .. 28
 - Integral Test .. 29
 - Comparison Test / Limit Comparison Test 29
 - Alternating Series Test .. 30
 - Absolute Convergence .. 31
 - Ratio Test ... 31
 - Root Test ... 32
 - Strategy for Series .. 32
 - Estimating the Value of a Series 32
 - Power Series .. 33
 - Power Series and Functions .. 33
 - Taylor Series .. 34
 - Applications of Series .. 34

© 2007 Paul Dawkins

http://tutorial.math.lamar.edu/terms.aspx
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial Series</td>
<td>35</td>
</tr>
<tr>
<td>Vectors</td>
<td>35</td>
</tr>
<tr>
<td>Introduction</td>
<td>35</td>
</tr>
<tr>
<td>Vectors – The Basics</td>
<td>36</td>
</tr>
<tr>
<td>Vector Arithmetic</td>
<td>36</td>
</tr>
<tr>
<td>Dot Product</td>
<td>37</td>
</tr>
<tr>
<td>Cross Product</td>
<td>38</td>
</tr>
<tr>
<td>Three Dimensional Space</td>
<td>38</td>
</tr>
<tr>
<td>Introduction</td>
<td>38</td>
</tr>
<tr>
<td>The 3-D Coordinate System</td>
<td>39</td>
</tr>
<tr>
<td>Equations of Lines</td>
<td>39</td>
</tr>
<tr>
<td>Equations of Planes</td>
<td>40</td>
</tr>
<tr>
<td>Quadric Surfaces</td>
<td>41</td>
</tr>
<tr>
<td>Functions of Several Variables</td>
<td>41</td>
</tr>
<tr>
<td>Vector Functions</td>
<td>42</td>
</tr>
<tr>
<td>Calculus with Vector Functions</td>
<td>43</td>
</tr>
<tr>
<td>Tangent, Normal and Binormal Vectors</td>
<td>43</td>
</tr>
<tr>
<td>Arc Length with Vector Functions</td>
<td>44</td>
</tr>
<tr>
<td>Curvature</td>
<td>44</td>
</tr>
<tr>
<td>Velocity and Acceleration</td>
<td>45</td>
</tr>
<tr>
<td>Cylindrical Coordinates</td>
<td>45</td>
</tr>
<tr>
<td>Spherical Coordinates</td>
<td>46</td>
</tr>
</tbody>
</table>
Preface

Here are a set of practice problems for my Calculus II notes. If you are viewing the pdf version of this document (as opposed to viewing it on the web) this document contains only the problems themselves and no solutions are included in this document. Solutions can be found in a number of places on the site.

1. If you’d like a pdf document containing the solutions go to the note page for the section you’d like solutions for and select the download solutions link from there. Or,

2. Go to the download page for the site http://tutorial.math.lamar.edu/download.aspx and select the section you’d like solutions for and a link will be provided there.

3. If you’d like to view the solutions on the web or solutions to an individual problem you can go to the problem set web page, select the problem you want the solution for. At this point I do not provide pdf versions of individual solutions, but for a particular problem you can select “Printable View” from the “Solution Pane Options” to get a printable version.

Note that some sections will have more problems than others and some will have more or less of a variety of problems. Most sections should have a range of difficulty levels in the problems although this will vary from section to section.

Outline

Here is a list of sections for which problems have been written.

Integration Techniques
Integration by Parts
Integrals Involving Trig Functions
Trig Substitutions
Partial Fractions
Integrals Involving Roots
Integrals Involving Quadratics
Using Integral Tables
Integration Strategy
Improper Integrals
Comparison Test for Improper Integrals
Approximating Definite Integrals

Applications of Integrals
Arc Length
Surface Area
Calculus II

Center of Mass
Hydrostatic Pressure and Force
Probability

Parametric Equations and Polar Coordinates
Parametric Equations and Curves
Tangents with Parametric Equations
Area with Parametric Equations
Arc Length with Parametric Equations
Surface Area with Parametric Equations
Polar Coordinates
Tangents with Polar Coordinates
Area with Polar Coordinates
Arc Length with Polar Coordinates
Surface Area with Polar Coordinates
Arc Length and Surface Area Revisited

Sequences and Series
Sequences
More on Sequences
Series – The Basics
Series – Convergence/Divergence
Series – Special Series
Integral Test
Comparison Test/Limit Comparison Test
Alternating Series Test
Absolute Convergence
Ratio Test
Root Test
Strategy for Series
Estimating the Value of a Series
Power Series
Power Series and Functions
Taylor Series
Applications of Series
Binomial Series

Vectors
Vectors – The Basics
Vector Arithmetic
Dot Product
Cross Product

Three Dimensional Space
The 3-D Coordinate System
Equations of Lines
Equations of Planes
Quadric Surfaces
Functions of Several Variables
Vector Functions
Calculus with Vector Functions
Tangent, Normal and Binormal Vectors
Arc Length with Vector Functions
Curvature
Velocity and Acceleration
Cylindrical Coordinates
Spherical Coordinates
Integration Techniques

Introduction

Here are a set of practice problems for the Integration Techniques chapter of my Calculus II notes. If you are viewing the pdf version of this document (as opposed to viewing it on the web) this document contains only the problems themselves and no solutions are included in this document. Solutions can be found in a number of places on the site.

4. If you’d like a pdf document containing the solutions go to the note page for the section you’d like solutions for and select the download solutions link from there. Or,

5. Go to the download page for the site http://tutorial.math.lamar.edu/download.aspx and select the section you’d like solutions for and a link will be provided there.

6. If you’d like to view the solutions on the web or solutions to an individual problem you can go to the problem set web page, select the problem you want the solution for. At this point I do not provide pdf versions of individual solutions, but for a particular problem you can select “Printable View” from the “Solution Pane Options” to get a printable version.

Note that some sections will have more problems than others and some will have more or less of a variety of problems. Most sections should have a range of difficulty levels in the problems although this will vary from section to section.

Here is a list of topics in this chapter that have practice problems written for them.

Integration by Parts
Integrals Involving Trig Functions
Trig Substitutions
Partial Fractions
Integrals Involving Roots
Integrals Involving Quadratics
Using Integral Tables
Integration Strategy
Improper Integrals
Comparison Test for Improper Integrals
Approximating Definite Integrals

Integration by Parts

Evaluate each of the following integrals.

1. \[\int 4x \cos (2 - 3x) \, dx \]
2. \(\int_0^1 (2 + 5x)e^{\frac{1}{2}x} \, dx \)

3. \(\int (3t + t^2)\sin(2t) \, dt \)

4. \(\int 6 \tan^{-1}\left(\frac{w}{w^2} \right) \, dw \)

5. \(\int e^{2z} \cos\left(\frac{1}{4}z \right) \, dz \)

6. \(\int_0^\pi x^3 \cos(4x) \, dx \)

7. \(\int t^7 \sin\left(2t^4 \right) \, dt \)

8. \(\int y^6 \cos(3y) \, dy \)

9. \(\int \left(4x^3 - 9x^2 + 7x + 3 \right)e^{-x} \, dx \)

Integrals Involving Trig Functions

Evaluate each of the following integrals.

1. \(\int \sin^3\left(\frac{\pi}{3}x \right) \cos^4\left(\frac{\pi}{3}x \right) \, dx \)

2. \(\int \sin^8(3z) \cos^5(3z) \, dz \)

3. \(\int \cos^4(2t) \, dt \)

4. \(\int_0^{2\pi} \cos^3\left(\frac{1}{2}w \right) \sin^5\left(\frac{1}{2}w \right) \, dw \)

5. \(\int \sec^6(3y) \tan^2(3y) \, dy \)

6. \(\int \tan^3(6x) \sec^{10}(6x) \, dx \)

7. \(\int_0^\pi \frac{1}{2} \tan^7(z) \sec^3(z) \, dz \)

8. \(\int \cos(3t) \sin(8t) \, dt \)
9. \(\int \sin(8x) \sin(x) \, dx \)

10. \(\int \cot(10z) \csc^4(10z) \, dz \)

11. \(\int \csc^6\left(\frac{1}{4}w\right) \cot^4\left(\frac{1}{4}w\right) \, dw \)

12. \(\int \frac{\sec^4(2t)}{\tan^9(2t)} \, dt \)

13. \(\int \frac{2 + 7 \sin^3(z)}{\cos^2(z)} \, dz \)

14. \(\int \left[9 \sin^5(3x) - 2 \cos^3(3x) \right] \csc^4(3x) \, dx \)

Trig Substitutions

For problems 1 – 8 use a trig substitution to eliminate the root.

1. \(\sqrt{4 - 9z^2} \)

2. \(\sqrt{13 + 25x^2} \)

3. \(\left(7t^2 - 3\right)^{\frac{3}{2}} \)

4. \(\sqrt{(w + 3)^2 - 100} \)

5. \(\sqrt{4(9t - 5)^2 + 1} \)

6. \(\sqrt{1 - 4z - 2z^2} \)

7. \(\left(x^2 - 8x + 21\right)^{\frac{3}{2}} \)

8. \(\sqrt{e^{8x} - 9} \)

For problems 9 – 16 use a trig substitution to evaluate the given integral.
9. \[\int \frac{\sqrt{x^2 + 16}}{x^4} \, dx \]

10. \[\int \sqrt{1 - 7w^2} \, dw \]

11. \[\int t^3 \left(3t^2 - 4 \right)^{\frac{5}{2}} \, dt \]

12. \[\int_{-5}^{5} \frac{2}{y^4 \sqrt{y^2 - 25}} \, dy \]

13. \[\int_{4}^{1} 2z^5 \sqrt{2 + 9z^2} \, dz \]

14. \[\int \frac{1}{\sqrt{9x^2 - 36x + 37}} \, dx \]

15. \[\int \frac{(z + 3)^5}{(40 - 6z - z^2)^2} \, dz \]

16. \[\int \cos(x) \sqrt{9 + 25\sin^2(x)} \, dx \]

Partial Fractions

Evaluate each of the following integrals.

1. \[\int \frac{4}{x^2 + 5x - 14} \, dx \]

2. \[\int \frac{8 - 3t}{10t^2 + 13t - 3} \, dt \]

3. \[\int_{-1}^{0} \frac{w^2 + 7w}{(w + 2)(w - 1)(w - 4)} \, dw \]

4. \[\int \frac{8}{3x^3 + 7x^2 + 4x} \, dx \]
Calculus II

5. \(\int_{2}^{4} \frac{3z^2 + 1}{(z+1)(z-5)^2} \, dz \)

6. \(\int \frac{4x - 11}{x^3 - 9x^2} \, dx \)

7. \(\int \frac{z^2 + 2z + 3}{(z-6)(z^2 + 4)} \, dz \)

8. \(\int \frac{8 + t + 6t^2 - 12t^3}{(3t^2 + 4)(t^2 + 7)} \, dt \)

9. \(\int \frac{6x^2 - 3x}{(x-2)(x+4)} \, dx \)

10. \(\int \frac{2 + w^4}{w^3 + 9w} \, dw \)

Integrals Involving Roots

Evaluate each of the following integrals.

1. \(\int \frac{7}{2 + \sqrt{x-4}} \, dx \)

2. \(\int \frac{1}{w + 2\sqrt{1 - w} + 2} \, dw \)

3. \(\int \frac{t - 2}{t - 3\sqrt{2t - 4} + 2} \, dt \)

Integrals Involving Quadratics

Evaluate each of the following integrals.

1. \(\int \frac{7}{w^2 + 3w + 3} \, dw \)
2. \(\int \frac{10x}{4x^2 - 8x + 9} \, dx \)

3. \(\int \frac{2t + 9}{(t^2 - 14t + 46)\frac{1}{2}} \, dt \)

4. \(\int \frac{3z}{(1 - 4z - 2z^2)\frac{1}{2}} \, dz \)

Integration Strategy

Problems have not yet been written for this section.

I was finding it very difficult to come up with a good mix of “new” problems and decided my time was better spent writing problems for later sections rather than trying to come up with a sufficient number of problems for what is essentially a review section. I intend to come back at a later date when I have more time to devote to this section and add problems then.

Improper Integrals

Determine if each of the following integrals converge or diverge. If the integral converges determine its value.

1. \(\int_0^\infty (1 + 2x) e^{-x} \, dx \)

2. \(\int_0^-\infty (1 + 2x) e^{-x} \, dx \)

3. \(\int_{-5}^1 \frac{1}{10 + 2z} \, dz \)

4. \(\int_1^2 \frac{4w}{\sqrt{w^2 - 4}} \, dw \)

5. \(\int_1^\infty \sqrt{6 - y} \, dy \)

6. \(\int_2^\infty \frac{9}{(1 - 3z)^4} \, dz \)
7. \(\int_{0}^{4} \frac{x}{x^2 - 9} \, dx \)

8. \(\int_{-\infty}^{\infty} \frac{6w^3}{(w^4 + 1)^2} \, dw \)

9. \(\int_{1}^{4} \frac{1}{x^2 + x - 6} \, dx \)

10. \(\int_{-\infty}^{0} \frac{1}{x^2} \, dx \)

Comparison Test for Improper Integrals

Use the Comparison Test to determine if the following integrals converge or diverge.

1. \(\int_{1}^{\infty} \frac{1}{x^3 + 1} \, dx \)

2. \(\int_{3}^{\infty} \frac{z^2}{z^3 - 1} \, dz \)

3. \(\int_{4}^{\infty} \frac{e^{-y}}{y} \, dy \)

4. \(\int_{1}^{\infty} \frac{z - 1}{z^4 + 2z^2} \, dz \)

5. \(\int_{6}^{\infty} \frac{w^2 + 1}{w^3 \left(\cos^2(w) + 1 \right)} \, dw \)

Approximating Definite Integrals

For each of the following integrals use the given value of \(n \) to approximate the value of the definite integral using

- (a) the Midpoint Rule,
- (b) the Trapezoid Rule, and
(c) Simpson’s Rule.

Use at least 6 decimal places of accuracy for your work.

1. \(\int_{1}^{7} \frac{1}{x^3 + 1} \, dx \) using \(n = 6 \)

2. \(\int_{3}^{4} \sqrt{e^{-x^2} + 1} \, dx \) using \(n = 6 \)

3. \(\int_{0}^{4} \cos \left(1 + \sqrt{x} \right) \, dx \) using \(n = 8 \)

Applications of Integrals

Introduction

Here are a set of practice problems for the Applications of Integrals chapter of my Calculus II notes. If you are viewing the pdf version of this document (as opposed to viewing it on the web) this document contains only the problems themselves and no solutions are included in this document. Solutions can be found in a number of places on the site.

7. If you’d like a pdf document containing the solutions go to the note page for the section you’d like solutions for and select the download solutions link from there. Or,

8. Go to the download page for the site http://tutorial.math.lamar.edu/download.aspx and select the section you’d like solutions for and a link will be provided there.

9. If you’d like to view the solutions on the web or solutions to an individual problem you can go to the problem set web page, select the problem you want the solution for. At this point I do not provide pdf versions of individual solutions, but for a particular problem you can select “Printable View” from the “Solution Pane Options” to get a printable version.

Note that some sections will have more problems than others and some will have more or less of a variety of problems. Most sections should have a range of difficulty levels in the problems although this will vary from section to section.

Here is a list of topics in this chapter that have practice problems written for them.

- [Arc Length](#)
- [Surface Area](#)
- [Center of Mass](#)
- [Hydrostatic Pressure and Force](#)
- [Probability](#)

© 2007 Paul Dawkins
Arc Length

1. Set up, but do not evaluate, an integral for the length of \(y = \sqrt{x + 2} \), \(1 \leq x \leq 7 \) using,

 (a) \(ds = \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx \)

 (b) \(ds = \sqrt{1 + \left(\frac{dx}{dy} \right)^2} \, dy \)

2. Set up, but do not evaluate, an integral for the length of \(x = \cos(y) \), \(0 \leq x \leq \frac{\pi}{2} \) using,

 (a) \(ds = \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx \)

 (b) \(ds = \sqrt{1 + \left(\frac{dx}{dy} \right)^2} \, dy \)

3. Determine the length of \(y = 7\left(6 + x^2\right) \), \(189 \leq y \leq 875 \).

4. Determine the length of \(x = 4\left(3 + y^2\right) \), \(1 \leq y \leq 4 \).

Surface Area

1. Set up, but do not evaluate, an integral for the surface area of the object obtained by rotating \(x = \sqrt{y + 5} \), \(\sqrt{5} \leq x \leq 3 \) about the y-axis using,

 (a) \(ds = \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx \)

 (b) \(ds = \sqrt{1 + \left(\frac{dx}{dy} \right)^2} \, dy \)

2. Set up, but do not evaluate, an integral for the surface area of the object obtained by rotating \(y = \sin(2x) \), \(0 \leq x \leq \frac{\pi}{8} \) about the x-axis using,

 (a) \(ds = \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx \)
Calculus II

(b) \(ds = \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy \)

3. Set up, but do not evaluate, an integral for the surface area of the object obtained by rotating \(y = x^3 + 4 \), \(1 \leq x \leq 5 \) about the given axis. You can use either \(ds \).

(a) \(x \)-axis

(b) \(y \)-axis

4. Find the surface area of the object obtained by rotating \(y = 4 + 3x^2 \), \(1 \leq x \leq 2 \) about the \(y \)-axis.

5. Find the surface area of the object obtained by rotating \(y = \sin(2x) \), \(0 \leq x \leq \frac{\pi}{8} \) about the \(x \)-axis.

Center of Mass

Find the center of mass for each of the following regions.

1. The region bounded by \(y = 4 - x^2 \) that is in the first quadrant.

2. The region bounded by \(y = 3 - e^{-x} \), the \(x \)-axis, \(x = 2 \) and the \(y \)-axis.

3. The triangle with vertices (0, 0), (-4, 2) and (0,6).

Hydrostatic Pressure and Force

Find the hydrostatic force on the following plates submerged in water as shown in each image. In each case consider the top of the blue “box” to be the surface of the water in which the plate is submerged. Note as well that the dimensions in many of the images will not be perfectly to scale in order to better fit the plate in the image. The lengths given in each image are in meters.

1.
2.

3. The plate in this case is the top half of a diamond formed from a square whose sides have a length of 2.
Probability

1. Let,

\[
 f(x) = \begin{cases}
 \frac{3}{37760} x^2 (20 - x) & \text{if } 2 \leq x \leq 18 \\
 0 & \text{otherwise}
\end{cases}
\]

(a) Show that \(f(x) \) is a probability density function.

(b) Find \(P(X \leq 7) \).

(c) Find \(P(X \geq 7) \).

(d) Find \(P(3 \leq X \leq 14) \).

(e) Determine the mean value of \(X \).

2. For a brand of light bulb the probability density function of the life span of the light bulb is given by the function below, where \(t \) is in months.

\[
 f(t) = \begin{cases}
 0.04e^{-\frac{t}{25}} & \text{if } t \geq 0 \\
 0 & \text{if } t < 0
\end{cases}
\]

(a) Verify that \(f(t) \) is a probability density function.

(b) What is the probability that a light bulb will have a life span less than 8 months?

(c) What is the probability that a light bulb will have a life span more than 20 months?

(d) What is the probability that a light bulb will have a life span between 14 and 30 months?

(e) Determine the mean value of the life span of the light bulbs.
3. Determine the value of c for which the function below will be a probability density function.

$$f(x) = \begin{cases} c(8x^3 - x^4) & \text{if } 0 \leq x \leq 8 \\ 0 & \text{otherwise} \end{cases}$$

Parametric Equations and Polar Coordinates

Introduction

Here are a set of practice problems for the Parametric Equations and Polar Coordinates chapter of my Calculus II notes. If you are viewing the pdf version of this document (as opposed to viewing it on the web) this document contains only the problems themselves and no solutions are included in this document. Solutions can be found in a number of places on the site.

10. If you’d like a pdf document containing the solutions go to the note page for the section you’d like solutions for and select the download solutions link from there. Or,

11. Go to the download page for the site http://tutorial.math.lamar.edu/download.aspx and select the section you’d like solutions for and a link will be provided there.

12. If you’d like to view the solutions on the web or solutions to an individual problem you can go to the problem set web page, select the problem you want the solution for. At this point I do not provide pdf versions of individual solutions, but for a particular problem you can select “Printable View” from the “Solution Pane Options” to get a printable version.

Note that some sections will have more problems than others and some will have more or less of a variety of problems. Most sections should have a range of difficulty levels in the problems although this will vary from section to section.

Here is a list of topics in this chapter that have practice problems written for them.

- **Parametric Equations and Curves**
- **Tangents with Parametric Equations**
- **Area with Parametric Equations**
- **Arc Length with Parametric Equations**
- **Surface Area with Parametric Equations**
- **Polar Coordinates**
- **Tangents with Polar Coordinates**
- **Area with Polar Coordinates**
- **Arc Length with Polar Coordinates**
- **Surface Area with Polar Coordinates**
- **Arc Length and Surface Area Revisited**
Parametric Equations and Curves

For problems 1 – 6 eliminate the parameter for the given set of parametric equations, sketch the graph of the parametric curve and give any limits that might exist on \(x \) and \(y \).

1. \(x = 4 - 2t \quad y = 3 + 6t - 4t^2 \)
2. \(x = 4 - 2t \quad y = 3 + 6t - 4t^2 \quad 0 \leq t \leq 3 \)
3. \(x = \sqrt{t+1} \quad y = \frac{1}{t+1} \quad t > -1 \)
4. \(x = 3 \sin(t) \quad y = -4 \cos(t) \quad 0 \leq t \leq 2\pi \)
5. \(x = 3 \sin(2t) \quad y = -4 \cos(2t) \quad 0 \leq t \leq 2\pi \)
6. \(x = 3 \sin\left(\frac{1}{4}t\right) \quad y = -4 \cos\left(\frac{1}{4}t\right) \quad 0 \leq t \leq 2\pi \)

For problems 7 – 11 the path of a particle is given by the set of parametric equations. Completely describe the path of the particle. To completely describe the path of the particle you will need to provide the following information.

(i) A sketch of the parametric curve (including direction of motion) based on the equation you get by eliminating the parameter.

(ii) Limits on \(x \) and \(y \).

(iii) A range of \(t \)'s for a single trace of the parametric curve.

(iv) The number of traces of the curve the particle makes if an overall range of \(t \)'s is provided in the problem.

7. \(x = 3 - 2 \cos(3t) \quad y = 1 + 4 \sin(3t) \)
8. \(x = 4 \sin\left(\frac{1}{4}t\right) \quad y = 1 - 2 \cos^2\left(\frac{1}{4}t\right) \quad -52\pi \leq t \leq 34\pi \)
9. \(x = \sqrt{4 + \cos\left(\frac{5}{2}t\right)} \quad y = 1 + \frac{1}{4} \cos\left(\frac{5}{2}t\right) \quad -48\pi \leq t \leq 2\pi \)
10. \(x = 2e^t \quad y = \cos\left(1 + e^{3t}\right) \quad 0 \leq t \leq \frac{3}{4} \)
11. \(x = \frac{1}{2} e^{-3t} \quad y = e^{-6t} + 2e^{-3t} - 8 \)

For problems 12 – 14 write down a set of parametric equations for the given equation that meets the given extra conditions (if any).
12. \(y = 3x^2 - \ln(4x + 2) \)

13. \(x^2 + y^2 = 36 \) and the parametric curve resulting from the parametric equations should be at \((6, 0)\) when \(t = 0 \) and the curve should have a counter clockwise rotation.

14. \(\frac{x^2}{4} + \frac{y^2}{49} = 1 \) and the parametric curve resulting from the parametric equations should be at \((0, -7)\) when \(t = 0 \) and the curve should have a clockwise rotation.

Tangents with Parametric Equations

For problems 1 and 2 compute \(\frac{dy}{dx} \) and \(\frac{d^2y}{dx^2} \) for the given set of parametric equations.

1. \(x = 4t^3 - t^2 + 7t \quad y = t^4 - 6 \)

2. \(x = e^{-2t} + 2 \quad y = 6e^{2t} + e^{-3t} - 4t \)

For problems 3 and 4 find the equation of the tangent line(s) to the given set of parametric equations at the given point.

3. \(x = 2\cos(3t) - 4\sin(3t) \quad y = 3\tan(6t) \) at \(t = \frac{\pi}{2} \)

4. \(x = t^2 - 2t - 11 \quad y = t(t - 4)^3 - 3t^2(t - 4)^2 + 7 \) at \((-3, 7)\)

5. Find the values of \(t \) that will have horizontal or vertical tangent lines for the following set of parametric equations.

\[
x = t^5 - 7t^4 - 3t^3 \quad y = 2\cos(3t) + 4t
\]

Area with Parametric Equations

For problems 1 and 2 determine the area of the region below the parametric curve given by the set of parametric equations. For each problem you may assume that each curve traces out exactly once from right to left for the given range of \(t \). For these problems you should only use the given parametric equations to determine the answer.

1. \(x = 4t^3 - t^2 \quad y = t^4 + 2t^2 \) \(1 \leq t \leq 3 \)

2. \(x = 3 - \cos^3(t) \quad y = 4 + \sin(t) \) \(0 \leq t \leq \pi \)
Arc Length with Parametric Equations

For all the problems in this section you should only use the given parametric equations to determine the answer.

For problems 1 and 2 determine the length of the parametric curve given by the set of parametric equations. For these problems you may assume that the curve traces out exactly once for the given range of \(t \)’s.

1. \(x = 8t^\frac{3}{2} \quad y = 3 + (8 - t)^{\frac{3}{2}} \quad 0 \leq t \leq 4 \)

2. \(x = 3t + 1 \quad y = 4 - t^2 \quad -2 \leq t \leq 0 \)

3. A particle travels along a path defined by the following set of parametric equations. Determine the total distance the particle travels and compare this to the length of the parametric curve itself.

\[
\begin{align*}
 x & = 4 \sin \left(\frac{t}{\pi} \right) \\
 y & = 1 - 2 \cos^2 \left(\frac{t}{\pi} \right) \\
 -52\pi & \leq t \leq 34\pi
\end{align*}
\]

For problems 4 and 5 set up, but do not evaluate, an integral that gives the length of the parametric curve given by the set of parametric equations. For these problems you may assume that the curve traces out exactly once for the given range of \(t \)’s.

4. \(x = 2 + t^2 \quad y = e^t \sin (2t) \quad 0 \leq t \leq 3 \)

5. \(x = \cos^3 (2t) \quad y = \sin \left(1 - t^2 \right) \quad -\frac{1}{2} \leq t \leq 0 \)

Surface Area with Parametric Equations

For all the problems in this section you should only use the given parametric equations to determine the answer.

For problems 1 – 3 determine the surface area of the object obtained by rotating the parametric curve about the given axis. For these problems you may assume that the curve traces out exactly once for the given range of \(t \)’s.

1. Rotate \(x = 3 + 2t \quad y = 9 - 3t \quad 1 \leq t \leq 4 \) about the \(y \)-axis.

2. Rotate \(x = 9 + 2t^2 \quad y = 4t \quad 0 \leq t \leq 2 \) about the \(x \)-axis.

3. Rotate \(x = 3 \cos (\pi t) \quad y = 5t + 2 \quad 0 \leq t \leq \frac{1}{2} \) about the \(y \)-axis.
For problems 4 and 5 set up, but do not evaluate, an integral that gives the surface area of the object obtained by rotating the parametric curve about the given axis. For these problems you may assume that the curve traces out exactly once for the given range of \(t \)’s.

4. Rotate \(x = 1 + \ln\left(5 + t^2\right) \), \(y = 2t - 2t^2 \) \(0 \leq t \leq 2 \) about the \(x \)-axis.

5. Rotate \(x = 1 + 3t^2 \), \(y = \sin\left(2t\right)\cos\left(\frac{1}{4}t\right) \) \(0 \leq t \leq \frac{1}{2} \) about the \(y \)-axis.

Polar Coordinates

1. For the point with polar coordinates \((2, \frac{\pi}{5}) \) determine three different sets of coordinates for the same point all of which have angles different from \(\frac{\pi}{5} \) and are in the range \(-2\pi \leq \theta \leq 2\pi \).

2. The polar coordinates of a point are \((-5, 0.23) \). Determine the Cartesian coordinates for the point.

3. The Cartesian coordinate of a point are \((2, -6) \). Determine a set of polar coordinates for the point.

4. The Cartesian coordinate of a point are \((-8, 1) \). Determine a set of polar coordinates for the point.

For problems 5 and 6 convert the given equation into an equation in terms of polar coordinates.

5. \(\frac{4x}{3x^2 + 3y^2} = 6 - xy \)

6. \(x^2 = \frac{4x}{y} - 3y^2 + 2 \)

For problems 7 and 8 convert the given equation into an equation in terms of Cartesian coordinates.

7. \(6r^3 \sin \theta = 4 - \cos \theta \)

8. \(\frac{2}{r} = \sin \theta - \sec \theta \)

For problems 9 – 16 sketch the graph of the given polar equation.

9. \(\cos \theta = \frac{6}{r} \)
10. \(\theta = -\frac{\pi}{3} \)

11. \(r = -14 \cos \theta \)

12. \(r = 7 \)

13. \(r = 9 \sin \theta \)

14. \(r = 8 + 8 \cos \theta \)

15. \(r = 5 - 2 \sin \theta \)

16. \(r = 4 - 9 \sin \theta \)

Tangents with Polar Coordinates

1. Find the tangent line to \(r = \sin(4\theta) \cos(\theta) \) at \(\theta = \frac{\pi}{6} \).

2. Find the tangent line to \(r = \theta - \cos(\theta) \) at \(\theta = \frac{3\pi}{4} \).

Area with Polar Coordinates

1. Find the area inside the inner loop of \(r = 3 - 8 \cos \theta \).

2. Find the area inside the graph of \(r = 7 + 3 \cos \theta \) and to the left of the \(y \)-axis.

3. Find the area that is inside \(r = 3 + 3 \sin \theta \) and outside \(r = 2 \).

4. Find the area that is inside \(r = 2 \) and outside \(r = 3 + 3 \sin \theta \).

5. Find the area that is inside \(r = 4 - 2 \cos \theta \) and outside \(r = 6 + 2 \cos \theta \).

6. Find the area that is inside both \(r = 1 - \sin \theta \) and \(r = 2 + \sin \theta \).
Arc Length with Polar Coordinates

1. Determine the length of the following polar curve. You may assume that the curve traces out exactly once for the given range of θ.

$$r = -4 \sin \theta, \ 0 \leq \theta \leq \pi$$

For problems 2 and 3 set up, but do not evaluate, an integral that gives the length of the given polar curve. For these problems you may assume that the curve traces out exactly once for the given range of θ.

2. $r = \theta \cos \theta, \ 0 \leq \theta \leq \pi$

3. $r = \cos(2\theta) + \sin(3\theta), \ 0 \leq \theta \leq 2\pi$

Surface Area with Polar Coordinates

For problems 1 and 2 set up, but do not evaluate, an integral that gives the surface area of the curve rotated about the given axis. For these problems you may assume that the curve traces out exactly once for the given range of θ.

1. $r = 5 - 4 \sin \theta, \ 0 \leq \theta \leq \pi$ rotated about the x-axis.

2. $r = \cos^2 \theta, \ -\frac{\pi}{6} \leq \theta \leq \frac{\pi}{6}$ rotated about the y-axis.

Arc Length and Surface Area Revisited

Problems have not yet been written for this section and probably won’t be to be honest since this is just a summary section.

Sequences and Series

Introduction

Here are a set of practice problems for the Sequences and Series chapter of my Calculus II notes. If you are viewing the pdf version of this document (as opposed to viewing it on the web) this document contains only the problems themselves and no solutions are included in this document. Solutions can be found in a number of places on the site.
13. If you’d like a pdf document containing the solutions go to the note page for the section you’d like solutions for and select the download solutions link from there. Or,

14. Go to the download page for the site http://tutorial.math.lamar.edu/download.aspx and select the section you’d like solutions for and a link will be provided there.

15. If you’d like to view the solutions on the web or solutions to an individual problem you can go to the problem set web page, select the problem you want the solution for. At this point I do not provide pdf versions of individual solutions, but for a particular problem you can select “Printable View” from the “Solution Pane Options” to get a printable version.

Note that some sections will have more problems than others and some will have more or less of a variety of problems. Most sections should have a range of difficulty levels in the problems although this will vary from section to section.

Here is a list of topics in this chapter that have practice problems written for them.

Sequences
- More on Sequences
- Series – The Basics
- Series – Convergence/Divergence
- Series – Special Series
- Integral Test
- Comparison Test/Limit Comparison Test
- Alternating Series Test
- Absolute Convergence
- Ratio Test
- Root Test
- Strategy for Series
- Estimating the Value of a Series

Power Series
- Power Series
- Power Series and Functions
- Taylor Series
- Applications of Series
- Binomial Series

Sequences

For problems 1 & 2 list the first 5 terms of the sequence.

1. \[
\left\{ \frac{4n}{n^3 - 7} \right\}_{n=0}^{\infty}
\]
2. \[
\left\{ \frac{(-1)^{n+1}}{2n + (-3)^n} \right\}_{n=2}^\infty
\]

For problems 3 – 6 determine if the given sequence converges or diverges. If it converges what is its limit?

3. \[
\left\{ \frac{n^2 - 7n + 3}{1 + 10n - 4n^2} \right\}_{n=3}^\infty
\]

4. \[
\left\{ \frac{(-1)^{n-2} n^2}{4 + n^3} \right\}_{n=0}^\infty
\]

5. \[
\left\{ \frac{e^{5n}}{3 - e^{2n}} \right\}_{n=1}^\infty
\]

6. \[
\left\{ \frac{\ln(n + 2)}{\ln(1 + 4n)} \right\}_{n=1}^\infty
\]

More on Sequences

For each of the following problems determine if the sequence is increasing, decreasing, not monotonic, bounded below, bounded above and/or bounded.

1. \[
\left\{ \frac{1}{4n} \right\}_{n=1}^\infty
\]

2. \[
\left\{ n(-1)^{n+2} \right\}_{n=0}^\infty
\]

3. \[
\left\{ 3^{-n} \right\}_{n=0}^\infty
\]

4. \[
\left\{ \frac{2n^2 - 1}{n} \right\}_{n=2}^\infty
\]

5. \[
\left\{ \frac{4-n}{2n+3} \right\}_{n=1}^\infty
\]
6. \[\left\{ \frac{-n}{n^2 + 25} \right\}_{n=2}^{\infty} \]

Series – The Basics

For problems 1 – 3 perform an index shift so that the series starts at \(n = 3 \).

1. \(\sum_{n=1}^{\infty} \left(n 2^n - 3^{1-n} \right) \)

2. \(\sum_{n=2}^{\infty} \frac{4 - n}{n^2 + 1} \)

3. \(\sum_{n=2}^{\infty} \frac{(-1)^{n-3} (n + 2)}{5^{1+2n}} \)

4. Strip out the first 3 terms from the series \(\sum_{n=1}^{\infty} \frac{2^{-n}}{n^2 + 1} \).

5. Given that \(\sum_{n=0}^{\infty} \frac{1}{n^2 + 1} = 1.6865 \) determine the value of \(\sum_{n=2}^{\infty} \frac{1}{n^3 + 1} \).

Series – Convergence/Divergence

For problems 1 & 2 compute the first 3 terms in the sequence of partial sums for the given series.

1. \(\sum_{n=1}^{\infty} n 2^n \)

2. \(\sum_{n=3}^{\infty} \frac{2n}{n + 2} \)
For problems 3 & 4 assume that the n^{th} term in the sequence of partial sums for the series $\sum_{n=0}^{\infty} a_n$ is given below. Determine if the series $\sum_{n=0}^{\infty} a_n$ is convergent or divergent. If the series is convergent determine the value of the series.

3. $s_n = \frac{5 + 8n^2}{2n - 7n^2}$

4. $s_n = \frac{n^2}{5 + 2n}$

For problems 5 & 6 show that the series is divergent.

5. $\sum_{n=0}^{\infty} \frac{3n e^n}{n^2 + 1}$

6. $\sum_{n=5}^{\infty} \frac{6 + 8n + 9n^2}{3 + 2n + n^2}$

Series – Special Series

For each of the following series determine if the series converges or diverges. If the series converges give its value.

1. $\sum_{n=0}^{\infty} 3^{2^n} 2^{1-3n}$

2. $\sum_{n=1}^{\infty} \frac{5}{6n}$

3. $\sum_{n=1}^{\infty} \frac{(-6)^{1-n}}{8^{2-n}}$

4. $\sum_{n=1}^{\infty} \frac{3}{n^2 + 7n + 12}$

5. $\sum_{n=1}^{\infty} \frac{5^{n+1}}{7^{n-2}}$
6. \(\sum_{n=2}^{\infty} \frac{5^{n+1}}{7^{n-2}} \)

7. \(\sum_{n=4}^{\infty} \frac{10}{n^2 - 4n + 3} \)

Integral Test

For each of the following series determine if the series converges or diverges.

1. \(\sum_{n=1}^{\infty} \frac{1}{n^\pi} \)

2. \(\sum_{n=0}^{\infty} \frac{2}{3+5n} \)

3. \(\sum_{n=2}^{\infty} \frac{1}{(2n+7)^3} \)

4. \(\sum_{n=0}^{\infty} \frac{n^2}{n^3 + 1} \)

5. \(\sum_{n=3}^{\infty} \frac{3}{n^2 - 3n + 2} \)

Comparison Test / Limit Comparison Test

For each of the following series determine if the series converges or diverges.

1. \(\sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 1} \right)^2 \)

2. \(\sum_{n=4}^{\infty} \frac{n^2}{n^3 - 3} \)
Alternating Series Test

For each of the following series determine if the series converges or diverges.

1. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{7 + 2n} \)

2. \(\sum_{n=0}^{\infty} \frac{(-1)^{n+3}}{n^2 + 4n + 1} \)

3. \(\sum_{n=0}^{\infty} \frac{1}{(-1)^n (2^n + 3^n)} \)
4. \[
\sum_{n=0}^{\infty} \frac{(-1)^{n+6} n}{n^2 + 9}
\]

5. \[
\sum_{n=4}^{\infty} \frac{(-1)^{n+2} (1-n)}{3n - n^2}
\]

Absolute Convergence

For each of the following series determine if they are absolutely convergent, conditionally convergent or divergent.

1. \[
\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n^3 + 1}
\]

2. \[
\sum_{n=1}^{\infty} \frac{(-1)^{n-3}}{\sqrt{n}}
\]

3. \[
\sum_{n=3}^{\infty} \frac{(-1)^{n+1} (n+1)}{n^3 + 1}
\]

Ratio Test

For each of the following series determine if the series converges or diverges.

1. \[
\sum_{n=1}^{\infty} \frac{3^{n-2n}}{n^2 + 1}
\]

2. \[
\sum_{n=0}^{\infty} \frac{(2n)!}{5n + 1}
\]

3. \[
\sum_{n=2}^{\infty} \frac{(-2)^{1+3n} (n+1)}{n^2 5^{1+n}}
\]

4. \[
\sum_{n=3}^{\infty} \frac{e^{4n}}{(n-2)!}
\]
5. \[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{6n + 7} \]

Root Test

For each of the following series determine if the series converges or diverges.

1. \[\sum_{n=1}^{\infty} \left(\frac{3n+1}{4-2n} \right)^{2n} \]
2. \[\sum_{n=0}^{\infty} \frac{n^{1-3n}}{4^{2n}} \]
3. \[\sum_{n=4}^{\infty} \frac{(-5)^{1+2n}}{2^{5n-3}} \]

Strategy for Series

Problems have not yet been written for this section.

I was finding it very difficult to come up with a good mix of “new” problems and decided my time was better spent writing problems for later sections rather than trying to come up with a sufficient number of problems for what is essentially a review section. I intend to come back at a later date when I have more time to devote to this section and add problems then.

Estimating the Value of a Series

1. Use the Integral Test and \(n = 10 \) to estimate the value of \(\sum_{n=1}^{\infty} \frac{n}{(n^2 + 1)^2} \).

2. Use the Comparison Test and \(n = 20 \) to estimate the value of \(\sum_{n=3}^{\infty} \frac{1}{n^3 \ln(n)} \).

3. Use the Alternating Series Test and \(n = 16 \) to estimate the value of \(\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 + 1} \).
4. Use the Ratio Test and \(n = 8 \) to estimate the value of \(\sum_{n=1}^{\infty} \frac{3^{1+n}}{n 2^{3+2n}} \).

Power Series

For each of the following power series determine the interval and radius of convergence.

1. \(\sum_{n=0}^{\infty} \frac{1}{(-3)^{2+n}(n^2+1)}(4x-12)^n \)

2. \(\sum_{n=0}^{\infty} \frac{n^{2n+1}}{4^{3n}}(2x+17)^n \)

3. \(\sum_{n=0}^{\infty} \frac{n+1}{(2n+1)!}(x-2)^n \)

4. \(\sum_{n=0}^{\infty} \frac{4^{1+2n}}{5^{n+1}}(x+3)^n \)

5. \(\sum_{n=0}^{\infty} \frac{6^n}{n}(4x-1)^{n-1} \)

Power Series and Functions

For problems 1 – 3 write the given function as a power series and give the interval of convergence.

1. \(f(x) = \frac{6}{1+7x^4} \)

2. \(f(x) = \frac{x^3}{3-x^2} \)

3. \(f(x) = \frac{3x^2}{5-2\sqrt[3]{x}} \)

4. Give a power series representation for the derivative of the following function.
Calculus II

\[g(x) = \frac{5x}{1 - 3x^4} \]

5. Give a power series representation for the integral of the following function.

\[h(x) = \frac{x^4}{9 + x^2} \]

Taylor Series

For problems 1 & 2 use one of the Taylor Series derived in the notes to determine the Taylor Series for the given function.

1. \(f(x) = \cos(4x) \) about \(x = 0 \)

2. \(f(x) = x^6 e^{x^3} \) about \(x = 0 \)

For problem 3 – 6 find the Taylor Series for each of the following functions.

3. \(f(x) = e^{-6x} \) about \(x = -4 \)

4. \(f(x) = \ln(3 + 4x) \) about \(x = 0 \)

5. \(f(x) = \frac{7}{x^4} \) about \(x = -3 \)

6. \(f(x) = 7x^2 - 6x + 1 \) about \(x = 2 \)

Applications of Series

1. Determine a Taylor Series about \(x = 0 \) for the following integral.

\[\int \frac{e^x - 1}{x} \, dx \]

2. Write down \(T_2(x) \), \(T_3(x) \) and \(T_4(x) \) for the Taylor Series of \(f(x) = e^{-6x} \) about \(x = -4 \).

Graph all three of the Taylor polynomials and \(f(x) \) on the same graph for the interval \([-8,-2]\).
3. Write down $T_3(x)$, $T_4(x)$ and $T_5(x)$ for the Taylor Series of $f(x) = \ln(3 + 4x)$ about $x = 0$. Graph all three of the Taylor polynomials and $f(x)$ on the same graph for the interval $[-\frac{1}{2},2]$.

Binomial Series

For problems 1 & 2 use the Binomial Theorem to expand the given function.

1. $(4 + 3x)^5$

2. $(9 - x)^4$

For problems 3 and 4 write down the first four terms in the binomial series for the given function.

3. $(1 + 3x)^{-6}$

4. $\sqrt[3]{8 - 2x}$

Vectors

Introduction

Here are a set of practice problems for the Vectors chapter of my Calculus II notes. If you are viewing the pdf version of this document (as opposed to viewing it on the web) this document contains only the problems themselves and no solutions are included in this document. Solutions can be found in a number of places on the site.

16. If you’d like a pdf document containing the solutions go to the note page for the section you’d like solutions for and select the download solutions link from there. Or,

17. Go to the download page for the site http://tutorial.math.lamar.edu/download.aspx and select the section you’d like solutions for and a link will be provided there.

18. If you’d like to view the solutions on the web or solutions to an individual problem you can go to the problem set web page, select the problem you want the solution for. At this point I do not provide pdf versions of individual solutions, but for a particular problem you can select “Printable View” from the “Solution Pane Options” to get a printable version.
Note that some sections will have more problems than others and some will have more or less of a variety of problems. Most sections should have a range of difficulty levels in the problems although this will vary from section to section.

Here is a list of topics in this chapter that have practice problems written for them.

Vectors – The Basics

Vector Arithmetic

Dot Product

Cross Product

Vectors – The Basics

For problems 1 – 4 give the vector for the set of points. Find its magnitude and determine if the vector is a unit vector.

1. The line segment from \((-9,2)\) to \((4,-1)\).

2. The line segment from \((4,5,6)\) to \((4,6,6)\).

3. The position vector for \((3,2,10)\).

4. The position vector for \(\begin{pmatrix} 13 \\ 22 \end{pmatrix}\).

5. The vector \(\mathbf{v} = \begin{pmatrix} 6 \\ 4 \\ 0 \end{pmatrix}\) starts at the point \(P = (2,5,1)\). At what point does the vector end?

Vector Arithmetic

1. Given \(\mathbf{a} = \begin{pmatrix} 8 \\ 5 \end{pmatrix}\) and \(\mathbf{b} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}\) compute each of the following.

 \(\text{(a) } 6\mathbf{a}\)

 \(\text{(b) } 7\mathbf{b} - 2\mathbf{a}\)

 \(\text{(c) } \|10\mathbf{a} + 3\mathbf{b}\|\)

2. Given \(\mathbf{u} = 8\mathbf{i} - \mathbf{j} + 3\mathbf{k}\) and \(\mathbf{v} = 7\mathbf{j} - 4\mathbf{k}\) compute each of the following.

 \(\text{(a) } -3\mathbf{v}\)

 \(\text{(b) } 12\mathbf{u} + \mathbf{v}\)
(e) $\| -9\vec{v} - 2\vec{u} \|

3. Find a unit vector that points in the same direction as $\vec{q} = \vec{i} + 3\vec{j} + 9\vec{k}$.

4. Find a vector that points in the same direction as $\vec{c} = \langle -1,4 \rangle$ with a magnitude of 10.

5. Determine if $\vec{a} = \langle 3,-5,1 \rangle$ and $\vec{b} = \langle 6,-2,2 \rangle$ are parallel vectors.

6. Determine if $\vec{v} = 9\vec{i} - 6\vec{j} - 24\vec{k}$ and $\vec{w} = \langle -15,10,40 \rangle$ are parallel vectors.

7. Prove the property: $\vec{v} + \vec{w} = \vec{w} + \vec{v}$.

Dot Product

For problems 1 – 3 determine the dot product, $\vec{a} \cdot \vec{b}$.

1. $\vec{a} = \langle 9,5,-4,2 \rangle$, $\vec{b} = \langle -3,-2,7,-1 \rangle$

2. $\vec{a} = \langle 0,4,-2 \rangle$, $\vec{b} = 2\vec{i} - \vec{j} + 7\vec{k}$

3. $\|\vec{a}\| = 5$, $\|\vec{b}\| = \frac{3}{7}$ and the angle between the two vectors is $\theta = \frac{\pi}{12}$.

For problems 4 & 5 determine the angle between the two vectors.

4. $\vec{v} = \langle 1,2,3,4 \rangle$, $\vec{w} = \langle 0,-1,4,-2 \rangle$

5. $\vec{a} = \vec{i} + 3\vec{j} - 2\vec{k}$, $\vec{b} = \langle -9,1,-5 \rangle$

For problems 6 – 8 determine if the two vectors are parallel, orthogonal or neither.

6. $\vec{q} = \langle 4,-2,7 \rangle$, $\vec{p} = -3\vec{i} + \vec{j} + 2\vec{k}$

7. $\vec{a} = \langle 3,10 \rangle$, $\vec{b} = \langle 4,-1 \rangle$

8. $\vec{w} = \vec{i} + 4\vec{j} - 2\vec{k}$, $\vec{v} = -3\vec{i} - 12\vec{j} + 6\vec{k}$

9. Given $\vec{a} = \langle -8,2 \rangle$ and $\vec{b} = \langle -1,-7 \rangle$ compute $\text{proj}_a \vec{b}$.
10. Given \(\vec{u} = 7\hat{i} - \hat{j} + \hat{k} \) and \(\vec{w} = -2\hat{i} + 5\hat{j} - 6\hat{k} \) compute \(\text{proj}_w \vec{u} \).

11. Determine the direction cosines and direction angles for \(\vec{r} = \left\langle -3, -\frac{1}{4}, 1 \right\rangle \).

Cross Product

1. If \(\vec{w} = \langle 3, -1, 5 \rangle \) and \(\vec{v} = \langle 0, 4, -2 \rangle \) compute \(\vec{v} \times \vec{w} \).

2. If \(\vec{w} = \langle 1, 6, -8 \rangle \) and \(\vec{v} = \langle 4, -2, -1 \rangle \) compute \(\vec{w} \times \vec{v} \).

3. Find a vector that is orthogonal to the plane containing the points \(P = (3, 0, 1) \), \(Q = (4, -2, 1) \) and \(R = (5, 3, -1) \).

4. Are the vectors \(\vec{u} = \langle 1, 2, -4 \rangle \), \(\vec{v} = \langle -5, 3, -7 \rangle \) and \(\vec{w} = \langle -1, 4, 2 \rangle \) are in the same plane?

Three Dimensional Space

Introduction

Here are a set of practice problems for the Three Dimensional Space chapter of my Calculus II notes. If you are viewing the pdf version of this document (as opposed to viewing it on the web) this document contains only the problems themselves and no solutions are included in this document. Solutions can be found in a number of places on the site.

19. If you’d like a pdf document containing the solutions go to the note page for the section you’d like solutions for and select the download solutions link from there. Or,

20. Go to the download page for the site http://tutorial.math.lamar.edu/download.aspx and select the section you’d like solutions for and a link will be provided there.

21. If you’d like to view the solutions on the web or solutions to an individual problem you can go to the problem set web page, select the problem you want the solution for. At this point I do not provide pdf versions of individual solutions, but for a particular problem you can select “Printable View” from the “Solution Pane Options” to get a printable version.
Note that some sections will have more problems than others and some will have more or less of a variety of problems. Most sections should have a range of difficulty levels in the problems although this will vary from section to section.

Here is a list of topics in this chapter that have practice problems written for them.

The 3-D Coordinate System
Equations of Lines
Equations of Planes
Quadric Surfaces
Functions of Several Variables
Vector Functions
Calculus with Vector Functions
Tangent, Normal and Binormal Vectors
Arc Length with Vector Functions
Curvature
Velocity and Acceleration
Cylindrical Coordinates
Spherical Coordinates

The 3-D Coordinate System

1. Give the projection of \(P = (3, -4, 6) \) onto the three coordinate planes.

2. Which of the points \(P = (4, -2, 6) \) and \(Q = (-6, -3, 2) \) is closest to the \(yz \)-plane?

3. Which of the points \(P = (-1, 4, -7) \) and \(Q = (6, -1, 5) \) is closest to the \(z \)-axis?

For problems 4 & 5 list all of the coordinates systems (\(\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3 \)) that the given equation will have a graph in. Do not sketch the graph.

4. \(7x^2 - 9y^3 = 3x + 1 \)

5. \(x^3 + \sqrt{y^2 + 1} - 6z = 2 \)

Equations of Lines

For problems 1 & 2 give the equation of the line in vector form, parametric form and symmetric form.

1. The line through the points \((2, -4, 1)\) and \((0, 4, -10)\).

2. The line through the point \((-7, 2, 4)\) and parallel to the line given by \(x = 5 - 8t, \ y = 6 + t, \ z = -12t \).
3. Is the line through the points \((2,0,9)\) and \((-4,1,-5)\) parallel, orthogonal or neither to the line given by \(\vec{r}(t) = \langle 5,1-9t,-8-4t \rangle\)?

For problems 4 & 5 determine the intersection point of the two lines or show that they do not intersect.

4. The line given by \(x = 8 + t\), \(y = 5 + 6t\), \(z = 4 - 2t\) and the line given by \(\vec{r}(t) = \langle -7+12t,3-t,14+8t \rangle\).

5. The line passing through the points \((1,-2,13)\) and \((2,0,-5)\) and the line given by \(\vec{r}(t) = \langle 2+4t,-1-t,3 \rangle\).

6. Does the line given by \(x = 9 + 2lt\), \(y = -7\), \(z = 12 - 11t\) intersect the \(xy\)-plane? If so, give the point.

7. Does the line given by \(x = 9 + 2lt\), \(y = -7\), \(z = 12 - 11t\) intersect the \(xz\)-plane? If so, give the point.

Equations of Planes

For problems 1 – 3 write down the equation of the plane.

1. The plane containing the points \((4,-3,1)\), \((-3,-1,1)\) and \((4,-2,8)\).

2. The plane containing the point \((3,0,-4)\) and orthogonal to the line given by \(\vec{r}(t) = \langle 12 - t,1+8t,4+6t \rangle\).

3. The plane containing the point \((-8,3,7)\) and parallel to the plane given by \(4x + 8y - 2z = 45\).

For problems 4 & 5 determine if the two planes are parallel, orthogonal or neither.

4. The plane given by \(4x - 9y - z = 2\) and the plane given by \(x + 2y - 14z = -6\).

5. The plane given by \(-3x + 2y + 7z = 9\) and the plane containing the points \((-2,6,1)\), \((-2,5,0)\) and \((-1,4,-3)\).

For problems 6 & 7 determine where the line intersects the plane or show that it does not intersect the plane.

6. The line given by \(\vec{r}(t) = \langle -2t,2+7t,-1-4t \rangle\) and the plane given by \(4x + 9y - 2z = -8\).
7. The line given by \(\vec{r}(t) = (4 + t, -1 + 8t, 3 + 2t) \) and the plane given by \(2x - y + 3z = 15 \).

8. Find the line of intersection of the plane given by \(3x + 6y - 5z = -3 \) and the plane given by \(-2x + 7y - z = 24 \).

9. Determine if the line given by \(x = 8 - 15t \), \(y = 9t \), \(z = 5 + 18t \) and the plane given by \(10x - 6y - 12z = 7 \) are parallel, orthogonal or neither.

Quadric Surfaces

Sketch each of the following quadric surfaces.

1. \(\frac{y^2}{9} + z^2 = 1 \)

2. \(\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{6} = 1 \)

3. \(z = \frac{x^2}{4} + \frac{y^2}{4} - 6 \)

4. \(y^2 = 4x^2 + 16z^2 \)

5. \(x = 4 - 5y^2 - 9z^2 \)

Functions of Several Variables

For problems 1 – 4 find the domain of the given function.

1. \(f(x, y) = \sqrt{x^2 - 2y} \)

2. \(f(x, y) = \ln (2x - 3y + 1) \)

3. \(f(x, y, z) = \frac{1}{x^2 + y^2 + 4z} \)

4. \(f(x, y) = \frac{1}{x} + \sqrt{y + 4} - \sqrt{x + 1} \)
For problems 5 – 7 identify and sketch the level curves (or contours) for the given function.

5. $2x - 3y + z^2 = 1$
6. $4z + 2y^2 - x = 0$
7. $y^2 = 2x^2 + z$

For problems 8 & 9 identify and sketch the traces for the given curves.

8. $2x - 3y + z^2 = 1$
9. $4z + 2y^2 - x = 0$

Vector Functions

For problems 1 & 2 find the domain of the given vector function.

1. $\mathbf{r}(t) = \left< t^2 + 1, \frac{1}{t+2}, \sqrt{t+4} \right>$
2. $\mathbf{r}(t) = \left< \ln(4-t^2), \sqrt{t+1} \right>$

For problems 3 – 5 sketch the graph of the given vector function.

3. $\mathbf{r}(t) = \left< 4t, 10 - 2t \right>$
4. $\mathbf{r}(t) = \left< t + 1, \frac{1}{4}t^2 + 3 \right>$
5. $\mathbf{r}(t) = \left< 4\sin(t), 8\cos(t) \right>$

For problems 6 & 7 identify the graph of the vector function without sketching the graph.

6. $\mathbf{r}(t) = \left< 3\cos(6t), -4, \sin(6t) \right>$
7. $\mathbf{r}(t) = \left< 2-t, 4 + 7t, -1 - 3t \right>$

For problems 8 & 9 write down the equation of the line segment between the two points.

8. The line segment starting at $(1, 3)$ and ending at $(-4, 6)$.
9. The line segment starting at \((0, 2, -1)\) and ending at \((7,-9,2)\).

Calculus with Vector Functions

For problems 1 – 3 evaluate the given limit.

1. \[
\lim_{t \to 1} \left(e^{t-1}, 4t, \frac{t-1}{t^2-1} \right)
\]

2. \[
\lim_{t \to 2} \left(\frac{1-e^{t^2}}{t^2+t-2} \hat{i} + \hat{j} + (t^2 + 6t) \hat{k} \right)
\]

3. \[
\lim_{t \to \infty} \left(\frac{1}{t^2}, \frac{2t^2}{1-t-t^2}, e^{-t} \right)
\]

For problems 4 – 6 compute the derivative of the given vector function.

4. \[
\vec{r}(t) = (t^3 - 1) \hat{i} + e^{2t} \hat{j} + \cos(t) \hat{k}
\]

5. \[
\vec{r}(t) = \left\{ \ln(t^2 + 1), te^{-t}, 4 \right\}
\]

6. \[
\vec{r}(t) = \left\{ \frac{t+1}{t-1}, \tan(4t), \sin^2(t) \right\}
\]

For problems 7 – 9 evaluate the given integral.

7. \[
\int \vec{r}(t) \, dt, \text{ where } \vec{r}(t) = t^3 \hat{i} - \frac{2t}{t^2+1} \hat{j} + \cos^3(3t) \hat{k}
\]

8. \[
\int_{-1}^{2} \vec{r}(t) \, dt \text{ where } \vec{r}(t) = \left\{ 6, 6t^2 - 4t, te^{2t} \right\}
\]

9. \[
\int \vec{r}(t) \, dt, \text{ where } \vec{r}(t) = \left\{ (1-t)\cos(t^2 - 2t), \cos(t)\sin(t), \sec^2(4t) \right\}
\]

Tangent, Normal and Binormal Vectors

For problems 1 & 2 find the unit tangent vector for the given vector function.
1. \(\mathbf{r}(t) = \langle t^2 + 1, 3 - t, t^3 \rangle \)

2. \(\mathbf{r}(t) = t e^{2t} \mathbf{i} + \left(2 - t^2 \right) \mathbf{j} - e^{2t} \mathbf{k} \)

For problems 3 & 4 find the tangent line to the vector function at the given point.

3. \(\mathbf{r}(t) = \cos(4t) \mathbf{i} + 3\sin(4t) \mathbf{j} + t^3 \mathbf{k} \) at \(t = \pi \).

4. \(\mathbf{r}(t) = \left\langle 7e^{2-t}, \frac{16}{t^3}, 5-t \right\rangle \) at \(t = 2 \).

5. Find the unit normal and the binormal vectors for the following vector function.

\[\mathbf{r}(t) = \langle \cos(2t), \sin(2t), 3 \rangle \]

Arc Length with Vector Functions

For problems 1 & 2 determine the length of the vector function on the given interval.

1. \(\mathbf{r}(t) = (3 - 4t) \mathbf{i} + 6t \mathbf{j} - (9 + 2t) \mathbf{k} \) from \(-6 \leq t \leq 8\).

2. \(\mathbf{r}(t) = \left\langle \frac{1}{3}t^3, 4t, \sqrt{2t^2} \right\rangle \) from \(0 \leq t \leq 2\).

For problems 3 & 4 find the arc length function for the given vector function.

3. \(\mathbf{r}(t) = \langle t^2, 2t^3, 1-t^3 \rangle \)

4. \(\mathbf{r}(t) = \langle 4t, -2t, \sqrt{5} t^3 \rangle \)

5. Determine where on the curve given by \(\mathbf{r}(t) = \langle t^2, 2t^3, 1-t^3 \rangle \) we are after traveling a distance of 20.

Curvature

Find the curvature for each the following vector functions.

1. \(\mathbf{r}(t) = \langle \cos(2t), -\sin(2t), 4t \rangle \)
2. \(\vec{r}(t) = \langle 4t, -t^2, 2t^3 \rangle \)

Velocity and Acceleration

1. An object's acceleration is given by \(\vec{a} = 3t \vec{i} - 4e^{-t} \vec{j} + 12t^2 \vec{k} \). The object's initial velocity is \(\vec{v}(0) = \vec{j} - 3\vec{k} \) and the object's initial position is \(\vec{r}(0) = -5\vec{i} + 2\vec{j} - 3\vec{k} \). Determine the object's velocity and position functions.

2. Determine the tangential and normal components of acceleration for the object whose position is given by \(\vec{r}(t) = \langle \cos(2t), -\sin(2t), 4t \rangle \).

Cylindrical Coordinates

For problems 1 & 2 convert the Cartesian coordinates for the point into Cylindrical coordinates.

1. \((4, -5, 2)\)

2. \((-4, -1, 8)\)

3. Convert the following equation written in Cartesian coordinates into an equation in Cylindrical coordinates.

\[x^3 + 2x^2 - 6z = 4 - 2y^2 \]

For problems 4 & 5 convert the equation written in Cylindrical coordinates into an equation in Cartesian coordinates.

4. \(zr = 2 - r^2 \)

5. \(4\sin(\theta) - 2\cos(\theta) = \frac{r}{z} \)

For problems 6 & 7 identify the surface generated by the given equation.

6. \(z = 7 - 4r^2 \)

7. \(r^2 - 4r\cos(\theta) = 14 \)
Spherical Coordinates

For problems 1 & 2 convert the Cartesian coordinates for the point into Spherical coordinates.

1. \((3,-4,1)\)

2. \((-2,-1,-7)\)

3. Convert the Cylindrical coordinates for the point \((2,0.345,-3)\) into Spherical coordinates.

4. Convert the following equation written in Cartesian coordinates into an equation in Spherical coordinates.

\[x^2 + y^2 = 4x + z - 2 \]

For problems 5 & 6 convert the equation written in Spherical coordinates into an equation in Cartesian coordinates.

5. \(\rho^2 = 3 - \cos \varphi\)

6. \(\csc \varphi = 2 \cos \theta + 4 \sin \theta\)

For problems 7 & 8 identify the surface generated by the given equation.

7. \(\varphi = \frac{4\pi}{5}\)

8. \(\rho = -2 \sin \varphi \cos \theta\)