Preface

Here are a set of problems for my Calculus I notes. These problems do not have any solutions available on this site. These are intended mostly for instructors who might want a set of problems to assign for turning in. I try to put up both practice problems (with solutions available) and these problems at the same time so that both will be available to anyone who wishes to use them.

More on Sequences

For each of the following problems determine if the sequence is increasing, decreasing, not monotonic, bounded below, bounded above and/or bounded.

1. \(\left\{ \frac{1}{n^3 + 1} \right\}_{n=1}^{\infty} \)

2. \(\{ e^{2n} \}_{n=0}^{\infty} \)

3. \(\{ (-3)^n \}_{n=0}^{\infty} \)

4. \(\{ \sin(n) \}_{n=4}^{\infty} \)

5. \(\{ \ln \left(\frac{1}{n} \right) \}_{n=2}^{\infty} \)

6. \(\{ \frac{3-n}{1-3n} \}_{n=1}^{\infty} \)

7. \(\{ \frac{2n+1}{4n+3} \}_{n=0}^{\infty} \)

8. \(\{ (1-n)e^n \}_{n=3}^{\infty} \)

9. \(\{ \frac{n^2 + 40}{n^2 + 3n + 1} \}_{n=1}^{\infty} \)
8. \[
\left\{ \frac{5+n}{100,000+n^2} \right\}_{n=0}^{\infty}
\]