Here are a set of problems for my Calculus I notes. These problems do not have any solutions available on this site. These are intended mostly for instructors who might want a set of problems to assign for turning in. I try to put up both practice problems (with solutions available) and these problems at the same time so that both will be available to anyone who wishes to use them.

Tangents with Parametric Equations

For problems 1 – 3 compute \(\frac{dy}{dx} \) and \(\frac{d^2y}{dx^2} \) for the given set of parametric equations.

1. \(x = 7t^2 - 9t \quad y = t^6 + 2t^2 \)
2. \(x = \tan(2t) - 12 \quad y = 3\sin(2t) + \sec(2t) + 4t \)
3. \(x = \ln(3t^2) + 8t \quad y = \ln(t^4) - 6\ln(t^2) \)

For problems 4 – 7 find the equation of the tangent line(s) to the given set of parametric equations at the given point.

4. \(x = t^3 + \cos(\pi t) \quad y = 4t + \sin(2t + 6) \) at \(t = -3 \)
5. \(x = t^3 + 2t - 1 \quad y = t^3 + 7t^2 + 8t \) at \(t = 1 \)
6. \(x = 6 - e^{t^3} \quad y = t^3 + 3t^2 - 18t + 2 \) at \((5, 2) \)
7. \(x = 6\sin\left(\frac{\pi}{2}t\right) \quad y = t^2 + 2t - 8 \) at \((-6, 7) \)

For problems 8 and 9 find the values of \(t \) that will have horizontal or vertical tangent lines for the given set of parametric equations.

8. \(x = t^3 - 5t^2 + t + 1 \quad y = t^4 + 8t^3 + 3t^2 \)
9. \(x = 7t^2 + e^{2t^2} \quad y = 10\sin\left(\frac{1}{2}t\right) - 1 \)