Limits

Definitions

- **Precise Definition:** We say \(\lim_{x \to a} f(x) = L \) if for every \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that whenever \(0 < |x - a| < \delta \) then \(|f(x) - L| < \varepsilon \).
- **"Working" Definition:** We say \(\lim_{x \to a} f(x) = L \) if we can make \(f(x) \) as close to \(L \) as we want by taking \(x \) large enough and positive.

Limit at Infinity: We say \(\lim_{x \to \infty} f(x) = L \) if we can make \(f(x) \) as close to \(L \) as we want by taking \(x \) large enough and positive.

There is a similar definition for \(\lim_{x \to -\infty} f(x) = L \) except we require \(x \) large and negative.

Infinite Limit: We say \(\lim_{x \to \infty} f(x) = \infty \) if we can make \(f(x) \) arbitrarily large (and positive) by taking \(x \) sufficiently close to \(a \) (on either side of \(a \)) without letting \(x = a \).

Right hand limit: \(\lim_{x \to a^+} f(x) = L \). This has the same definition as the limit except it requires \(x > a \).

Left hand limit: \(\lim_{x \to a^-} f(x) = L \). This has the same definition as the limit except it requires \(x < a \).

Relationship between the limit and one-sided limits

- \(\lim_{x \to a} f(x) = L \) if and only if \(\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \).
- \(\lim_{x \to a} f(x) \) does not exist if \(\lim_{x \to a^+} f(x) \) or \(\lim_{x \to a^-} f(x) \) do not exist or do not equal \(L \).

Properties

1. \(\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \)
2. \(\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) \)
3. \(\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x) \)
4. \(\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \) provided \(\lim_{x \to a} g(x) \neq 0 \)
5. \(\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x) \right]^n \)
6. \(\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} \)

Basic Limit Evaluations at \(\pm \infty \)

- \(\lim_{x \to \pm \infty} e^x = \infty \) and \(\lim_{x \to \pm \infty} e^{-x} = 0 \)
- \(\lim_{x \to \pm \infty} \ln(x) = \pm \infty \) and \(\lim_{x \to 0^+} \ln(x) = -\infty \)
- \(\lim_{x \to \pm \infty} x^n = \pm \infty \) for even \(n \)
- \(\lim_{x \to \pm \infty} x^n = -\infty \) for odd \(n \)
- \(\lim_{x \to \pm \infty} ax^n + \ldots + bx + c = \text{sgn}(a)\infty \)
- \(\lim_{x \to \pm \infty} ax^n + \ldots + bx + c = \text{sgn}(a)\text{sgn}(b)\infty \)
- \(\lim_{x \to \pm \infty} ax^n + \ldots + cx + d = -\infty \)

Examples

- \(\lim_{x \to \infty} \frac{1}{x} = 0 \)
- \(\lim_{x \to -\infty} \frac{1}{x} = 0 \)
- \(\lim_{x \to \infty} \frac{1}{x^2} = 0 \)
- \(\lim_{x \to -\infty} \frac{1}{x^2} = 0 \)

Note: \(\text{sgn}(a) = 1 \) if \(a > 0 \) and \(\text{sgn}(a) = -1 \) if \(a < 0 \).

Calculus Cheat Sheet

Continuous Functions

- If \(f(x) \) is continuous at \(a \) then \(\lim_{x \to a} f(x) = f(a) \)
- \(\lim_{x \to \infty} \frac{x^2 + 4x - 12}{x^2 - 2x} = \lim_{x \to \infty} \frac{(x-2)(x+6)}{x(x-2)} = \lim_{x \to \infty} \frac{x+6}{x} = 1 \)

Evaluation Techniques

L'Hospital's Rule

- If \(\lim_{x \to a} f(x) = 0 \) or \(\lim_{x \to a} g(x) = 0 \) then \(\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \) if \(f'(x) \) and \(g'(x) \) exist.

Polynomials at Infinity

- If \(p(x) \) and \(q(x) \) are polynomials. To compute \(\lim_{x \to \infty} \frac{p(x)}{q(x)} \) factor largest power of \(x \) in \(q(x) \) out of both \(p(x) \) and \(q(x) \), then compute limit.

- \(\lim_{x \to \infty} \frac{3x^2 - 4}{5x^2 - 2x^2} = \lim_{x \to \infty} \frac{3x^2}{7x^2} = \frac{3}{7} \)

Piecewise Function

- \(\lim_{x \to a} g(x) \) where \(g(x) = \begin{cases} x^2 + 5 & \text{if } x < -2 \\ 1 - 3x & \text{if } x \geq -2 \end{cases} \)

Compute two one sided limits,

- \(\lim_{x \to -2} g(x) = \lim_{x \to -2^-} g(x) = 1 - 3(-2) = 7 \)
- \(\lim_{x \to -2} g(x) = \lim_{x \to -2^+} g(x) = (-2)^2 + 5 = 9 \)

One sided limits are different so \(\lim_{x \to -2} g(x) \) doesn’t exist. If the two one sided limits had been equal then \(\lim_{x \to a} g(x) \) would have existed and had the same value.

Some Continuous Functions

Partial list of continuous functions and the values of \(x \) for which they are continuous.

1. Polynomials for all \(x \),
2. Rational function, except for \(x \)'s that give division by zero,
3. \(\sqrt{\ } \) (odd) for all \(x \),
4. \(\sqrt{\ } \) (even) for all \(x > 0 \),
5. \(e^x \) for all \(x \),
6. \(\ln(x) \) for \(x > 0 \),
7. \(\cos(x) \) and \(\sin(x) \) for all \(x \),
8. \(\tan(x) \) and \(\sec(x) \) provided \(x \neq \cdots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \cdots \),
9. \(\cot(x) \) and \(\csc(x) \) provided \(x \neq \cdots, -2\pi, -\pi, 0, \pi, 2\pi, \cdots \)

Intermediate Value Theorem

Suppose that \(f(x) \) is continuous on \([a, b]\) and let \(M \) be any number between \(f(a) \) and \(f(b) \). Then there exists a number \(c \) such that \(a < c < b \) and \(f(c) = M \).