Paul's Online Math Notes
Calculus III (Notes) / Partial Derivatives / Interpretations of Partial Derivatives   [Notes] [Practice Problems] [Assignment Problems]

Calculus III - Notes
3-Dimensional Space Previous Chapter   Next Chapter Applications of Partial Derivatives
Partial Derivatives Previous Section   Next Section Higher Order Partial Derivatives

 Interpretations of Partial Derivatives

This is a fairly short section and is here so we can acknowledge that the two main interpretations of derivatives of functions of a single variable still hold for partial derivatives, with small modifications of course to account of the fact that we now have more than one variable.

 

The first interpretation we’ve already seen and is the more important of the two.  As with functions of single variables partial derivatives represent the rates of change of the functions as the variables change.  As we saw in the previous section,  represents the rate of change of the function  as we change x and hold y fixed while  represents the rate of change of  as we change y and hold x fixed.

 

Example 1  Determine if  is increasing or decreasing at ,

(a) if we allow x to vary and hold y fixed.

(b) if we allow y to vary and hold x fixed.

 

Solution

(a) If we allow x to vary and hold y fixed.

 

In this case we will first need  and its value at the point.

                             

 

So, the partial derivative with respect to x is positive and so if we hold y fixed the function is increasing at  as we vary x.

 

(b) If we allow y to vary and hold x fixed.

 

For this part we will need  and its value at the point.

                     

 

Here the partial derivative with respect to y is negative and so the function is decreasing at  as we vary y and hold x fixed.

 

Note that it is completely possible for a function to be increasing for a fixed y and decreasing for a fixed x at a point as this example has shown.  To see a nice example of this take a look at the following graph.

PD_G1

 

This is a graph of a hyperbolic paraboloid and at the origin we can see that if we move in along the y-axis the graph is increasing and if we move along the x-axis the graph is decreasing.  So it is completely possible to have a graph both increasing and decreasing at a point depending upon the direction that we move.  We should never expect that the function will behave in exactly the same way at a point as each variable changes. 

 

The next interpretation was one of the standard interpretations in a Calculus I class.  We know from a Calculus I class that  represents the slope of the tangent line to  at .  Well,  and  also represent the slopes of tangent lines.  The difference here is the functions that they represent tangent lines to. 

 

Partial derivatives are the slopes of traces.  The partial derivative  is the slope of the trace of  for the plane  at the point .  Likewise the partial derivative  is the slope of the trace of  for the plane  at the point .

 

Example 2  Find the slopes of the traces to  at the point .

 

Solution

We sketched the traces for the planes  and  in a previous section and these are the two traces for this point.  For reference purposes here are the graphs of the traces.

 

PD_Ex2_G1    PD_Ex2_G2

Next we’ll need the two partial derivatives so we can get the slopes.

                                     

 

To get the slopes all we need to do is evaluate the partial derivatives at the point in question.

                                       

 

So, the tangent line at  for the trace to  for the plane  has a slope of -8.  Also the tangent line at  for the trace to  for the plane  has a slope of -4. 

 

Finally, let’s briefly talk about getting the equations of the tangent line.  Recall that the equation of a line in 3-D space is given by a vector equation.  Also to get the equation we need a point on the line and a vector that is parallel to the line.

 

The point is easy.  Since we know the x-y coordinates of the point all we need to do is plug this into the equation to get the point.  So, the point will be,

 

 

 

 

The parallel (or tangent) vector is also just as easy.  We can write the equation of the surface as a vector function as follows,

 

 

 

We know that if we have a vector function of one variable we can get a tangent vector by differentiating the vector function.  The same will hold true here.  If we differentiate with respect to x we will get a tangent vector to traces for the plane  (i.e. for fixed y) and if we differentiate with respect to y we will get a tangent vector to traces for the plane  (or fixed x). 

 

So, here is the tangent vector for traces with fixed y.

 

 

 

We differentiated each component with respect to x.  Therefore the first component becomes a 1 and the second becomes a zero because we are treating y as a constant when we differentiate with respect to x.  The third component is just the partial derivative of the function with respect to x.

 

For traces with fixed x the tangent vector is,

 

 

 

The equation for the tangent line to traces with fixed y is then,

 

 

and the tangent line to traces with fixed x is,

 

 

 

Example 3  Write down the vector equations of the tangent lines to the traces to  at the point .

 

Solution

There really isn’t all that much to do with these other than plugging the values and function into the formulas above.  We’ve already computed the derivatives and their values at  in the previous example and the point on each trace is,

                                                       

 

Here is the equation of the tangent line to the trace for the plane .

                                        

 

Here is the equation of the tangent line to the trace for the plane .

                                        

Partial Derivatives Previous Section   Next Section Higher Order Partial Derivatives
3-Dimensional Space Previous Chapter   Next Chapter Applications of Partial Derivatives

Calculus III (Notes) / Partial Derivatives / Interpretations of Partial Derivatives    [Notes] [Practice Problems] [Assignment Problems]

© 2003 - 2016 Paul Dawkins