Loading Solution   
Paul's Online Math Notes
Calculus III (Practice Problems) / Applications of Partial Derivatives / Lagrange Multipliers   [Notes] [Practice Problems] [Assignment Problems]

Calculus III - Practice Problems
Partial Derivatives Previous Chapter   Next Chapter Multiple Integrals
Absolute Minimums and Maximums Previous Section   Next Section Multiple Integrals (Introduction)

 Lagrange Multipliers

 

1. Find the maximum and minimum values of  subject to the constraint [Solution]

 

2. Find the maximum and minimum values of  subject to the constraint . [Solution]

 

3. Find the maximum and minimum values of  subject to the constraint . [Solution]

 

4. Find the maximum and minimum values of  subject to the constraint .  Assume that  for this problem.  Why is this assumption needed? [Solution]

 

5. Find the maximum and minimum values of  subject to the constraints  and . [Solution]

 

Problem Pane
Absolute Minimums and Maximums Previous Section   Next Section Multiple Integrals (Introduction)
Partial Derivatives Previous Chapter   Next Chapter Multiple Integrals

Calculus III (Practice Problems) / Applications of Partial Derivatives / Lagrange Multipliers    [Notes] [Practice Problems] [Assignment Problems]

© 2003 - 2017 Paul Dawkins