• Go To
• Notes
• Practice and Assignment problems are not yet written. As time permits I am working on them, however I don't have the amount of free time that I used to so it will take a while before anything shows up here.
• Show/Hide
• Show all Solutions/Steps/etc.
• Hide all Solutions/Steps/etc.
Paul's Online Notes
Home / Differential Equations / Laplace Transforms / Table Of Laplace Transforms
Show General Notice Show Mobile Notice Show All Notes Hide All Notes
General Notice

This is a little bit in advance, but I wanted to let everyone know that my servers will be undergoing some maintenance on May 17 and May 18 during 8:00 AM CST until 2:00 PM CST. Hopefully the only inconvenience will be the occasional “lost/broken” connection that should be fixed by simply reloading the page. Outside of that the maintenance should (fingers crossed) be pretty much “invisible” to everyone.

Paul
May 6, 2021

Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

### Section 4-10 : Table Of Laplace Transforms

#### Table of Laplace Transforms

$$f\left( t \right) = {\mathcal{L}^{\,\, - 1}}\left\{ {F\left( s \right)} \right\}$$ $$F\left( s \right) = \mathcal{L}\left\{ {f\left( t \right)} \right\}$$
1. 1 $$\displaystyle \frac{1}{s}$$
2. $${{\bf{e}}^{a\,t}}$$ $$\displaystyle \frac{1}{{s - a}}$$
3. $${t^n},\,\,\,\,\,n = 1,2,3, \ldots$$ $$\displaystyle \frac{{n!}}{{{s^{n + 1}}}}$$
4. $${t^p}$$, $$p > -1$$ $$\displaystyle \frac{{\Gamma \left( {p + 1} \right)}}{{{s^{p + 1}}}}$$
5. $$\sqrt t$$ $$\displaystyle \frac{{\sqrt \pi }}{{2{s^{\frac{3}{2}}}}}$$
6. $${t^{n - \frac{1}{2}}},\,\,\,\,\,n = 1,2,3, \ldots$$ $$\displaystyle \frac{{1 \cdot 3 \cdot 5 \cdots \left( {2n - 1} \right)\sqrt \pi }}{{{2^n}{s^{n + \frac{1}{2}}}}}$$
7. $$\sin \left( {at} \right)$$ $$\displaystyle \frac{a}{{{s^2} + {a^2}}}$$
8. $$\cos \left( {at} \right)$$ $$\displaystyle \frac{s}{{{s^2} + {a^2}}}$$
9. $$t\sin \left( {at} \right)$$ $$\displaystyle \frac{{2as}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}$$
10. $$t\cos \left( {at} \right)$$ $$\displaystyle \frac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}$$
11. $$\sin \left( {at} \right) - at\cos \left( {at} \right)$$ $$\displaystyle \frac{{2{a^3}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}$$
12. $$\sin \left( {at} \right) + at\cos \left( {at} \right)$$ $$\displaystyle \frac{{2a{s^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}$$
13. $$\cos \left( {at} \right) - at\sin \left( {at} \right)$$ $$\displaystyle \frac{{s\left( {{s^2} - {a^2}} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}$$
14. $$\cos \left( {at} \right) + at\sin \left( {at} \right)$$ $$\displaystyle \frac{{s\left( {{s^2} + 3{a^2}} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}$$
15. $$\sin \left( {at + b} \right)$$ $$\displaystyle \frac{{s\sin \left( b \right) + a\cos \left( b \right)}}{{{s^2} + {a^2}}}$$
16. $$\cos \left( {at + b} \right)$$ $$\displaystyle \frac{{s\cos \left( b \right) - a\sin \left( b \right)}}{{{s^2} + {a^2}}}$$
17. $$\sinh \left( {at} \right)$$ $$\displaystyle \frac{a}{{{s^2} - {a^2}}}$$
18. $$\cosh \left( {at} \right)$$ $$\displaystyle \frac{s}{{{s^2} - {a^2}}}$$
19. $${{\bf{e}}^{at}}\sin \left( {bt} \right)$$ $$\displaystyle \frac{b}{{{{\left( {s - a} \right)}^2} + {b^2}}}$$
20. $${{\bf{e}}^{at}}\cos \left( {bt} \right)$$ $$\displaystyle \frac{{s - a}}{{{{\left( {s - a} \right)}^2} + {b^2}}}$$
21. $${{\bf{e}}^{at}}\sinh \left( {bt} \right)$$ $$\displaystyle \frac{b}{{{{\left( {s - a} \right)}^2} - {b^2}}}$$
22. $${{\bf{e}}^{at}}\cosh \left( {bt} \right)$$ $$\displaystyle \frac{{s - a}}{{{{\left( {s - a} \right)}^2} - {b^2}}}$$
23. $${t^n}{{\bf{e}}^{at}},\,\,\,\,\,n = 1,2,3, \ldots$$ $$\displaystyle \frac{{n!}}{{{{\left( {s - a} \right)}^{n + 1}}}}$$
24. $$f\left( {ct} \right)$$ $$\displaystyle \frac{1}{c}F\left( {\frac{s}{c}} \right)$$
25. $${u_c}\left( t \right) = u\left( {t - c} \right)$$
Heaviside Function
$$\displaystyle \frac{{{{\bf{e}}^{ - cs}}}}{s}$$
26. $$\delta \left( {t - c} \right)$$
Dirac Delta Function
$${{\bf{e}}^{ - cs}}$$
27. $${u_c}\left( t \right)f\left( {t - c} \right)$$ $${{\bf{e}}^{ - cs}}F\left( s \right)$$
28. $${u_c}\left( t \right)g\left( t \right)$$ $${{\bf{e}}^{ - cs}}{\mathcal{L}}\left\{ {g\left( {t + c} \right)} \right\}$$
29. $${{\bf{e}}^{ct}}f\left( t \right)$$ $$F\left( {s - c} \right)$$
30. $${t^n}f\left( t \right),\,\,\,\,\,n = 1,2,3, \ldots$$ $${\left( { - 1} \right)^n}{F^{\left( n \right)}}\left( s \right)$$
31. $$\displaystyle \frac{1}{t}f\left( t \right)$$ $$\int_{{\,s}}^{{\,\infty }}{{F\left( u \right)\,du}}$$
32. $$\displaystyle \int_{{\,0}}^{{\,t}}{{\,f\left( v \right)\,dv}}$$ $$\displaystyle \frac{{F\left( s \right)}}{s}$$
33. $$\displaystyle \int_{{\,0}}^{{\,t}}{{f\left( {t - \tau } \right)g\left( \tau \right)\,d\tau }}$$ $$F\left( s \right)G\left( s \right)$$
34. $$f\left( {t + T} \right) = f\left( t \right)$$ $$\displaystyle \frac{{\displaystyle \int_{{\,0}}^{{\,T}}{{{{\bf{e}}^{ - st}}f\left( t \right)\,dt}}}}{{1 - {{\bf{e}}^{ - sT}}}}$$
35. $$f'\left( t \right)$$ $$sF\left( s \right) - f\left( 0 \right)$$
36. $$f''\left( t \right)$$ $${s^2}F\left( s \right) - sf\left( 0 \right) - f'\left( 0 \right)$$
37. $${f^{\left( n \right)}}\left( t \right)$$ $${s^n}F\left( s \right) - {s^{n - 1}}f\left( 0 \right) - {s^{n - 2}}f'\left( 0 \right) \cdots - s{f^{\left( {n - 2} \right)}}\left( 0 \right) - {f^{\left( {n - 1} \right)}}\left( 0 \right)$$

#### Table Notes

1. This list is not a complete listing of Laplace transforms and only contains some of the more commonly used Laplace transforms and formulas.

2. Recall the definition of hyperbolic functions. $\cosh \left( t \right) = \frac{{{{\bf{e}}^t} + {{\bf{e}}^{ - t}}}}{2}\hspace{0.25in}\hspace{0.25in}\sinh \left( t \right) = \frac{{{{\bf{e}}^t} - {{\bf{e}}^{ - t}}}}{2}$
3. Be careful when using “normal” trig function vs. hyperbolic functions. The only difference in the formulas is the “$$+ a^{2}$$” for the “normal” trig functions becomes a “$$- a^{2}$$” for the hyperbolic functions!

4. Formula #4 uses the Gamma function which is defined as $\Gamma \left( t \right) = \int_{{\,0}}^{{\,\infty }}{{{{\bf{e}}^{ - x}}{x^{t - 1}}\,dx}}$

If $$n$$ is a positive integer then,

$\Gamma \left( {n + 1} \right) = n!$

The Gamma function is an extension of the normal factorial function. Here are a couple of quick facts for the Gamma function

$\begin{array}{c}\Gamma \left( {p + 1} \right) = p\Gamma \left( p \right)\\ p\left( {p + 1} \right)\left( {p + 2} \right) \cdots \left( {p + n - 1} \right) =\displaystyle \frac{{\Gamma \left( {p + n} \right)}}{{\Gamma \left( p \right)}}\\ \Gamma \left( {\displaystyle \frac{1}{2}} \right) = \sqrt \pi \end{array}$