Paul's Online Notes
Paul's Online Notes
Home / Calculus I / Limits / Computing Limits
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 2.5 : Computing Limits

For problems 1 – 9 evaluate the limit, if it exists.

  1. \(\mathop {\lim }\limits_{x \to 2} \left( {8 - 3x + 12{x^2}} \right)\) Solution
  2. \(\displaystyle \mathop {\lim }\limits_{t \to \, - 3} \frac{{6 + 4t}}{{{t^2} + 1}}\) Solution
  3. \(\displaystyle \mathop {\lim }\limits_{x \to \, - 5} \frac{{{x^2} - 25}}{{{x^2} + 2x - 15}}\) Solution
  4. \(\displaystyle \mathop {\lim }\limits_{z \to 8} \frac{{2{z^2} - 17z + 8}}{{8 - z}}\) Solution
  5. \(\displaystyle \mathop {\lim }\limits_{y \to 7} \frac{{{y^2} - 4y - 21}}{{3{y^2} - 17y - 28}}\) Solution
  6. \(\displaystyle \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {6 + h} \right)}^2} - 36}}{h}\) Solution
  7. \(\displaystyle \mathop {\lim }\limits_{z \to 4} \frac{{\sqrt z - 2}}{{z - 4}}\) Solution
  8. \(\displaystyle \mathop {\lim }\limits_{x \to \, - 3} \frac{{\sqrt {2x + 22} - 4}}{{x + 3}}\) Solution
  9. \(\displaystyle \mathop {\lim }\limits_{x \to 0} \frac{x}{{3 - \sqrt {x + 9} }}\) Solution
  10. Given the function \[f\left( x \right) = \left\{ {\begin{array}{rc}{7 - 4x}&{x < 1}\\{{x^2} + 2}&{x \ge 1}\end{array}} \right.\]

    Evaluate the following limits, if they exist.

    1. \(\mathop {\lim }\limits_{x \to \, - 6} f\left( x \right)\)
    2. \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\)
    Solution
  11. Given \[h\left( z \right) = \left\{ {\begin{array}{rc}{6z}&{z \le - 4}\\{1 - 9z}&{z > - 4}\end{array}} \right.\]

    Evaluate the following limits, if they exist.

    1. \(\mathop {\lim }\limits_{z \to 7} h\left( z \right)\)
    2. \(\mathop {\lim }\limits_{z \to - 4} h\left( z \right)\)
    Solution

For problems 12 & 13 evaluate the limit, if it exists.

  1. \(\mathop {\lim }\limits_{x \to 5} \left( {10 + \left| {x - 5} \right|} \right)\) Solution
  2. \(\displaystyle \mathop {\lim }\limits_{t \to \, - 1} \frac{{t + 1}}{{\left| {t + 1} \right|}}\) Solution
  3. Given that \(x^{3}-6x^{2}+12x-3 \le f\left( x \right) \le x^{2}-4x+9\) for \(x \le 3\) determine the value of \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\). Solution
  4. Use the Squeeze Theorem to determine the value of \(\displaystyle \mathop {\lim }\limits_{x \to 0} {x^4}\sin \left( {\frac{\pi }{x}} \right)\). Solution