Paul's Online Notes
Home / Calculus I / Limits / Computing Limits
Show General Notice Show Mobile Notice Show All Notes Hide All Notes
General Notice

This is a little bit in advance, but I wanted to let everyone know that my servers will be undergoing some maintenance on May 17 and May 18 during 8:00 AM CST until 2:00 PM CST. Hopefully the only inconvenience will be the occasional “lost/broken” connection that should be fixed by simply reloading the page. Outside of that the maintenance should (fingers crossed) be pretty much “invisible” to everyone.

Paul
May 6, 2021

Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

### Section 2-5 : Computing Limits

For problems 1 – 9 evaluate the limit, if it exists.

1. $$\mathop {\lim }\limits_{x \to 2} \left( {8 - 3x + 12{x^2}} \right)$$ Solution
2. $$\displaystyle \mathop {\lim }\limits_{t \to \, - 3} \frac{{6 + 4t}}{{{t^2} + 1}}$$ Solution
3. $$\displaystyle \mathop {\lim }\limits_{x \to \, - 5} \frac{{{x^2} - 25}}{{{x^2} + 2x - 15}}$$ Solution
4. $$\displaystyle \mathop {\lim }\limits_{z \to 8} \frac{{2{z^2} - 17z + 8}}{{8 - z}}$$ Solution
5. $$\displaystyle \mathop {\lim }\limits_{y \to 7} \frac{{{y^2} - 4y - 21}}{{3{y^2} - 17y - 28}}$$ Solution
6. $$\displaystyle \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {6 + h} \right)}^2} - 36}}{h}$$ Solution
7. $$\displaystyle \mathop {\lim }\limits_{z \to 4} \frac{{\sqrt z - 2}}{{z - 4}}$$ Solution
8. $$\displaystyle \mathop {\lim }\limits_{x \to \, - 3} \frac{{\sqrt {2x + 22} - 4}}{{x + 3}}$$ Solution
9. $$\displaystyle \mathop {\lim }\limits_{x \to 0} \frac{x}{{3 - \sqrt {x + 9} }}$$ Solution
10. Given the function $f\left( x \right) = \left\{ {\begin{array}{rc}{7 - 4x}&{x < 1}\\{{x^2} + 2}&{x \ge 1}\end{array}} \right.$

Evaluate the following limits, if they exist.

1. $$\mathop {\lim }\limits_{x \to \, - 6} f\left( x \right)$$
2. $$\mathop {\lim }\limits_{x \to 1} f\left( x \right)$$
Solution
11. Given $h\left( z \right) = \left\{ {\begin{array}{rc}{6z}&{z \le - 4}\\{1 - 9z}&{z > - 4}\end{array}} \right.$

Evaluate the following limits, if they exist.

1. $$\mathop {\lim }\limits_{z \to 7} h\left( z \right)$$
2. $$\mathop {\lim }\limits_{z \to - 4} h\left( z \right)$$
Solution

For problems 12 & 13 evaluate the limit, if it exists.

1. $$\mathop {\lim }\limits_{x \to 5} \left( {10 + \left| {x - 5} \right|} \right)$$ Solution
2. $$\displaystyle \mathop {\lim }\limits_{t \to \, - 1} \frac{{t + 1}}{{\left| {t + 1} \right|}}$$ Solution
3. Given that $$7x \le f\left( x \right) \le 3{x^2} + 2$$ for all x determine the value of $$\mathop {\lim }\limits_{x \to 2} f\left( x \right)$$. Solution
4. Use the Squeeze Theorem to determine the value of $$\displaystyle \mathop {\lim }\limits_{x \to 0} {x^4}\sin \left( {\frac{\pi }{x}} \right)$$. Solution