I have been informed that on March 7th from 6:00am to 6:00pm Central Time Lamar University will be doing some maintenance to replace a faulty UPS component and to do this they will be completely powering down their data center.
Unfortunately, this means that the site will be down during this time. I apologize for any inconvenience this might cause.
Paul
February 18, 2026
Section 9.4 : Arc Length with Parametric Equations
For all the problems in this section you should only use the given parametric equations to determine the answer.
For problems 1 and 2 determine the length of the parametric curve given by the set of parametric equations. For these problems you may assume that the curve traces out exactly once for the given range of t’s.
- \(x = 8{t^{\frac{3}{2}}}\hspace{0.25in} y = 3 + {\left( {8 - t} \right)^{\frac{3}{2}}}\hspace{0.25in} 0 \le t \le 4\) Solution
- \(x = 3t + 1\hspace{0.25in} y = 4 - {t^2}\hspace{0.25in} - 2 \le t \le 0\) Solution
- A particle travels along a path defined by the following set of parametric equations. Determine the total distance the particle travels and compare this to the length of the parametric curve itself. \[x = 4\sin \left( {\frac{1}{4}t} \right)\hspace{0.25in}y = 1 - 2{\cos ^2}\left( {\frac{1}{4}t} \right)\hspace{0.5in} - 52\pi \le t \le 34\pi \] Solution
For problems 4 and 5 set up, but do not evaluate, an integral that gives the length of the parametric curve given by the set of parametric equations. For these problems you may assume that the curve traces out exactly once for the given range of t’s.