Paul's Online Notes
Paul's Online Notes
Home / Calculus III / Applications of Partial Derivatives
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Chapter 14 : Applications of Partial Derivatives

Here are a set of practice problems for the Applications of Partial Derivatives chapter of the Calculus III notes.

  1. If you’d like a pdf document containing the solutions the download tab above contains links to pdf’s containing the solutions for the full book, chapter and section. At this time, I do not offer pdf’s for solutions to individual problems.
  2. If you’d like to view the solutions on the web go to the problem set web page, click the solution link for any problem and it will take you to the solution to that problem.

Note that some sections will have more problems than others and some will have more or less of a variety of problems. Most sections should have a range of difficulty levels in the problems although this will vary from section to section.

Here is a list of all the sections for which practice problems have been written as well as a brief description of the material covered in the notes for that particular section.

Tangent Planes and Linear Approximations – In this section formally define just what a tangent plane to a surface is and how we use partial derivatives to find the equations of tangent planes to surfaces that can be written as \(z=f(x,y)\). We will also see how tangent planes can be thought of as a linear approximation to the surface at a given point.

Gradient Vector, Tangent Planes and Normal Lines – In this section discuss how the gradient vector can be used to find tangent planes to a much more general function than in the previous section. We will also define the normal line and discuss how the gradient vector can be used to find the equation of the normal line.

Relative Minimums and Maximums – In this section we will define critical points for functions of two variables and discuss a method for determining if they are relative minimums, relative maximums or saddle points (i.e. neither a relative minimum or relative maximum).

Absolute Minimums and Maximums – In this section we will how to find the absolute extrema of a function of two variables when the independent variables are only allowed to come from a region that is bounded (i.e. no part of the region goes out to infinity) and closed (i.e. all of the points on the boundary are valid points that can be used in the process).

Lagrange Multipliers – In this section we’ll see discuss how to use the method of Lagrange Multipliers to find the absolute minimums and maximums of functions of two or three variables in which the independent variables are subject to one or more constraints. We also give a brief justification for how/why the method works.