Paul's Online Notes
Home / Calculus III / 3-Dimensional Space / Spherical Coordinates
Show General Notice Show Mobile Notice Show All Notes Hide All Notes
General Notice

This is a little bit in advance, but I wanted to let everyone know that my servers will be undergoing some maintenance on May 17 and May 18 during 8:00 AM CST until 2:00 PM CST. Hopefully the only inconvenience will be the occasional “lost/broken” connection that should be fixed by simply reloading the page. Outside of that the maintenance should (fingers crossed) be pretty much “invisible” to everyone.

Paul
May 6, 2021

Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

### Section 1-13 : Spherical Coordinates

For problems 1 & 2 convert the Cartesian coordinates for the point into Spherical coordinates.

1. $$\left( {3, - 4,1} \right)$$ Solution
2. $$\left( { - 2, - 1, - 7} \right)$$ Solution
3. Convert the Cylindrical coordinates for the point $$\left( {2,0.345, - 3} \right)$$ into Spherical coordinates. Solution
4. Convert the following equation written in Cartesian coordinates into an equation in Spherical coordinates. ${x^2} + {y^2} = 4x + z - 2$ Solution

For problems 5 & 6 convert the equation written in Spherical coordinates into an equation in Cartesian coordinates.

1. $${\rho ^2} = 3 - \cos \varphi$$ Solution
2. $$\csc \varphi = 2\cos \theta + 4\sin \theta$$ Solution

For problems 7 & 8 identify the surface generated by the given equation.

1. $$\displaystyle \varphi = \frac{{4\pi }}{5}$$ Solution
2. $$\rho = - 2\sin \varphi \cos \theta$$ Solution