Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Paul's Online Notes
Paul's Online Notes
Home / Calculus I / Integrals / Definition of the Definite Integral
Hide Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.
Assignment Problems Notice
Please do not email me to get solutions and/or answers to these problems. I will not give them out under any circumstances nor will I respond to any requests to do so. The intent of these problems is for instructors to use them for assignments and having solutions/answers easily available defeats that purpose.

If you are looking for some problems with solutions you can find some by clicking on the "Practice Problems" link above.

Section 5.6 : Definition of the Definite Integral

For problems 1 – 4 use the definition of the definite integral to evaluate the integral. Use the right end point of each interval for xi.

  1. 1274xdx
  2. 203x2+4xdx
  3. 11(x3)2dx
  4. 308x3+3x2dx
  5. Evaluate : 123123cos6(2x)sin8(4x)dx

For problems 6 – 8 determine the value of the given integral given that 52f(x)dx=1 and 52g(x)dx=8.

  1. 523g(x)dx
  2. 527f(x)14g(x)dx
  3. 2512g(x)3f(x)dx
  4. Determine the value of 17f(x)dx given that 713f(x)dx=9 and 113f(x)dx=12.
  5. Determine the value of 604f(x)dx given that 50f(x)dx=10 and 65f(x)dx=3.
  6. Determine the value of 102f(x)dx given that 42f(x)dx=1, 74f(x)dx=3 and 710f(x)dx=8.
  7. Determine the value of 15f(x)dx given that 52f(x)dx=56, 27f(x)dx=90 and 71f(x)dx=45.

For problems 13 – 17 sketch the graph of the integrand and use the area interpretation of the definite integral to determine the value of the integral.

  1. 12125xdx
  2. 4016x2dx
  3. 3359x2dx
  4. 318x3dx
  5. 61|x3|dx

For problems 18 – 23 differentiate each of the following integrals with respect to x.

  1. x8ecos(t)dt
  2. x22cos(t)+3dt
  3. e3x01t4+t2+1dt
  4. 8sin(9x)et7tdt
  5. xx3cos4(t)sin2(t)dt
  6. tan(x)9xcos(t)+2sin(t)+4dt
  7. Evaluate the limit : lim