Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.
Assignment Problems Notice
Please do not email me to get solutions and/or answers to these problems. I will not give them out under any circumstances nor will I respond to any requests to do so. The intent of these problems is for instructors to use them for assignments and having solutions/answers easily available defeats that purpose.
If you are looking for some problems with solutions you can find some by clicking on the "Practice Problems" link above.
If you are looking for some problems with solutions you can find some by clicking on the "Practice Problems" link above.
Section 15.6 : Triple Integrals in Cylindrical Coordinates
- Evaluate ∭E8zdV where E is the region bounded by z=2x2+2y2−4 and z=5−x2−y2 in the 1st octant.
- Evaluate ∭E6xydV where E is the region above z=2x−10, below z=2 and inside the cylinder x2+y2=4.
- Evaluate ∭E9yz3dV where E is the region between x=−√9y2+9z2 and x=√y2+z2 inside the cylinder y2+z2=1.
- Evaluate ∭Ex+2dV where E is the region bounded by x=18−4y2−4z2 and x=2 with z≥0.
- Evaluate ∭Ex+2dV where E is the region between the two planes 2x+y+z=6 and 6x+3y+3z=12 inside the cylinder x2+z2=16.
- Evaluate ∭Ex2dV where E is the region bounded by y=x2+z2−4 and y=8−5x2−5z2 with x≤0.
- Use a triple integral to determine the volume of the region bounded by z=√x2+y2, and z=x2+y2 in the 1st octant.
- Use a triple integral to determine the volume of the region bounded by y=√9x2+9z2, and y=−3x2−3z2 in the 1st octant.
- Use a triple integral to determine the volume of the region behind x=z+3, in front of x=−z−6 and inside the cylinder y2+z2=4.
- Evaluate the following integral by first converting to an integral in cylindrical coordinates. ∫4−4∫√16−y20∫6+x06yx2dzdxdy
- Evaluate the following integral by first converting to an integral in cylindrical coordinates. ∫30∫√9−x2−√9−x2∫6+x2+y2−√2x2+2y215zdzdydx
- Use a triple integral in cylindrical coordinates to derive the volume of a cylinder of height h and radius a.