Paul's Online Notes
Paul's Online Notes
Home / Algebra / Polynomial Functions / Partial Fractions
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 5.5 : Partial Fractions

3. Determine the partial fraction decomposition of each of the following expression.

\[\frac{{125 + 4x - 9{x^2}}}{{\left( {x - 1} \right)\left( {x + 3} \right)\left( {x + 4} \right)}}\]

Show All Steps Hide All Steps

Start Solution

The first step is to determine the form of the partial fraction decomposition. For this problem the partial fraction decomposition is,

\[\frac{{125 + 4x - 9{x^2}}}{{\left( {x - 1} \right)\left( {x + 3} \right)\left( {x + 4} \right)}} = \frac{A}{{x - 1}} + \frac{B}{{x + 3}} + \frac{C}{{x + 4}}\] Show Step 2

The LCD for this expression is \(\left( {x - 1} \right)\left( {x + 3} \right)\left( {x + 4} \right)\). Adding the terms back up gives,

\[\frac{{125 + 4x - 9{x^2}}}{{\left( {x - 1} \right)\left( {x + 3} \right)\left( {x + 4} \right)}} = \frac{{A\left( {x + 3} \right)\left( {x + 4} \right) + B\left( {x - 1} \right)\left( {x + 4} \right) + C\left( {x - 1} \right)\left( {x + 3} \right)}}{{\left( {x - 1} \right)\left( {x + 3} \right)\left( {x + 4} \right)}}\] Show Step 3

Setting the numerators equal gives,

\[125 + 4x - 9{x^2} = A\left( {x + 3} \right)\left( {x + 4} \right) + B\left( {x - 1} \right)\left( {x + 4} \right) + C\left( {x - 1} \right)\left( {x + 3} \right)\] Show Step 4

Now all we need to do is pick “good” values of \(x\) to determine the constants. Here is that work.

\[\begin{array}{l}{x = - 4:}\\{x = - 3:}\\{x = 1:}\end{array}\hspace{0.25in}\begin{aligned} - 35 & = 5C\\32 &= - 4B\\120 & = 20A\end{aligned}\hspace{0.25in} \to \hspace{0.25in}\begin{array}{l}{A = 6}\\{B = - 8}\\{C = - 7}\end{array}\] Show Step 5

The partial fraction decomposition is then,

\[\require{bbox} \bbox[2pt,border:1px solid black]{{\frac{{125 + 4x - 9{x^2}}}{{\left( {x - 1} \right)\left( {x + 3} \right)\left( {x + 4} \right)}} = \frac{6}{{x - 1}} - \frac{8}{{x + 3}} - \frac{7}{{x + 4}}}}\]