Paul's Online Notes
Home / Algebra / Solving Equations and Inequalities / Solutions and Solution Sets
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

### Section 2.1 : Solutions and Solution Sets

5. Is $$z = 4$$ a solution to $$6z - {z^2} \ge {z^2} + 3$$?

Show Solution

There really isn’t all that much to do for these kinds of problems. All we need to do is plug the given number into both sides of the inequality and check to see if the inequality is true. In this case that will mean checking to see if the left side is larger than or equal to the right side.

Here is that work for this particular problem.

\begin{align*}6\left( 4 \right) - {\left( 4 \right)^2} & \mathop \ge \limits^? {\left( 4 \right)^2} + 3\\ 8\require{cancel} & \bcancel{ \ge }19\,\,\,\,{\mbox{NOT OK}}\end{align*}

So, we can see that the left side is neither larger than nor equal to the right side and so $$z = 4$$ is not a solution to this inequality.