I have been informed that on March 7th from 6:00am to 6:00pm Central Time Lamar University will be doing some maintenance to replace a faulty UPS component and to do this they will be completely powering down their data center.
Unfortunately, this means that the site will be down during this time. I apologize for any inconvenience this might cause.
Paul
February 18, 2026
Section 3.9 : Chain Rule
28. Find the tangent line to \(f\left( x \right) = 4\sqrt {2x} - 6{{\bf{e}}^{2 - x}}\) at \(x = 2\).
Show All Steps Hide All Steps
Start SolutionWe know that the derivative of the function will give us the slope of the tangent line so we’ll need the derivative of the function. Differentiating each term will require the Chain Rule as well.
\[\begin{align*}f\left( x \right) & = 4{\left( {2x} \right)^{\frac{1}{2}}} - 6{{\bf{e}}^{2 - x}}\\ f'\left( x \right) & = 4\left( {\frac{1}{2}} \right){\left( {2x} \right)^{ - \,\,\frac{1}{2}}}\left( 2 \right) - 6{{\bf{e}}^{2 - x}}\left( { - 1} \right) = 4{\left( {2x} \right)^{ - \,\,\frac{1}{2}}} + 6{{\bf{e}}^{2 - x}} = \require{bbox} \bbox[2pt,border:1px solid black]{{\frac{4}{{\sqrt {2x} }} + 6{{\bf{e}}^{2 - x}}}}\end{align*}\] Show Step 2Now all we need to do is evaluate the function and the derivative at the point in question.
\[f\left( 2 \right) = 4\left( 2 \right) - 6{{\bf{e}}^0} = 2\hspace{0.25in}\hspace{0.25in}f'\left( 2 \right) = \frac{4}{2} + 6{{\bf{e}}^0} = 8\] Show Step 3Now all that we need to do is write down the equation of the tangent line.
\[y = f\left( 2 \right) + f'\left( 2 \right)\left( {x - 2} \right) = 2 + 8\left( {x - 2} \right)\hspace{0.25in} \to \hspace{0.25in}\,\require{bbox} \bbox[2pt,border:1px solid black]{{y = 8x - 14}}\]