Show General Notice
Show Mobile Notice
Show All Notes Hide All Notes
I have been informed that on March 7th from 6:00am to 6:00pm Central Time Lamar University will be doing some maintenance to replace a faulty UPS component and to do this they will be completely powering down their data center.
Unfortunately, this means that the site will be down during this time. I apologize for any inconvenience this might cause.
Paul
February 18, 2026
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.
Section 1.1 : Review : Functions
9. The difference quotient of a function \(f\left( x \right)\) is defined to be,
\[\frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\]
compute the difference quotient for \(\displaystyle A\left( t \right) = \frac{{2t}}{{3 - t}}\).
Show All Steps Hide All Steps
Start Solution
\[A\left( {t + h} \right) = \frac{{2\left( {t + h} \right)}}{{3 - \left( {t + h} \right)}} = \frac{{2t + 2h}}{{3 - t - h}}\]
Show Step 2
\[\begin{align*}A\left( {t + h} \right) - A\left( t \right) & = \frac{{2t + 2h}}{{3 - t - h}} - \frac{{2t}}{{3 - t}}\\ & = \frac{{\left( {2t + 2h} \right)\left( {3 - t} \right) - 2t\left( {3 - t - h} \right)}}{{\left( {3 - t - h} \right)\left( {3 - t} \right)}}\\ & = \frac{{6t - 2{t^2} + 6h - 2ht - \left( {6t - 2{t^2} - 2th} \right)}}{{\left( {3 - t - h} \right)\left( {3 - t} \right)}}\\ & = \frac{{6h}}{{\left( {3 - t - h} \right)\left( {3 - t} \right)}}\end{align*}\]
Note that, when dealing with difference quotients, it will almost always be advisable to combine rational expressions into a single term in preparation of the next step. Also, when doing this don’t forget to simplify the numerator as much as possible. With most difference quotients you’ll see a lot of cancelation as we did here.
Show Step 3
\[\frac{{A\left( {t + h} \right) - A\left( t \right)}}{h} = \frac{1}{h}\left( {A\left( {t + h} \right) - A\left( t \right)} \right) = \frac{1}{h}\left( {\frac{{6h}}{{\left( {3 - t - h} \right)\left( {3 - t} \right)}}} \right) = \frac{6}{{\left( {3 - t - h} \right)\left( {3 - t} \right)}}\]
In this step we rewrote the difference quotient a little to make the numerator a little easier to deal with. All that we’re doing here is using the fact that,
\[\frac{a}{b} = \left( a \right)\left( {\frac{1}{b}} \right) = \left( {\frac{1}{b}} \right)\left( a \right)\]