Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.
Section 2.8 : Limits at Infinity, Part II
5. For \(\displaystyle f\left( x \right) = \frac{{{{\bf{e}}^{ - 3x}} - 2{{\bf{e}}^{8x}}}}{{9{{\bf{e}}^{8x}} - 7{{\bf{e}}^{ - 3x}}}}\) evaluate each of the following limits.
- \(\mathop {\lim }\limits_{x \to \, - \infty } f\left( x \right)\)
- \(\mathop {\lim }\limits_{x \to \,\infty } f\left( x \right)\)
Hint : Remember that you’ll need to factor the term in the denominator that is causing the denominator to go to infinity from both the numerator and denominator in order to evaluate this limit.
Show All Solutions Hide All Solutions
a \(\mathop {\lim }\limits_{x \to \, - \infty } f\left( x \right)\) Show SolutionThe exponential with the negative exponent is the only term in the denominator going to infinity for this limit and so we’ll need to factor the exponential with the negative exponent in the denominator from both the numerator and denominator to evaluate this limit.
\[\mathop {\lim }\limits_{x \to \, - \infty } \frac{{{{\bf{e}}^{ - 3x}} - 2{{\bf{e}}^{8x}}}}{{9{{\bf{e}}^{8x}} - 7{{\bf{e}}^{ - 3x}}}} = \mathop {\lim }\limits_{x \to \, - \infty } \frac{{{{\bf{e}}^{ - 3x}}\left( {1 - 2{{\bf{e}}^{11x}}} \right)}}{{{{\bf{e}}^{ - 3x}}\left( {9{{\bf{e}}^{11x}} - 7} \right)}} = \mathop {\lim }\limits_{x \to \, - \infty } \frac{{1 - 2{{\bf{e}}^{11x}}}}{{9{{\bf{e}}^{11x}} - 7}} = \frac{{1 - 0}}{{0 - 7}} = \require{bbox} \bbox[2pt,border:1px solid black]{{ - \frac{1}{7}}}\]b \(\mathop {\lim }\limits_{x \to \,\infty } f\left( x \right)\) Show Solution
The exponential with the positive exponent is the only term in the denominator going to infinity for this limit and so we’ll need to factor the exponential with the positive exponent in the denominator from both the numerator and denominator to evaluate this limit.
\[\mathop {\lim }\limits_{x \to \,\infty } \frac{{{{\bf{e}}^{ - 3x}} - 2{{\bf{e}}^{8x}}}}{{9{{\bf{e}}^{8x}} - 7{{\bf{e}}^{ - 3x}}}} = \mathop {\lim }\limits_{x \to \,\infty } \frac{{{{\bf{e}}^{8x}}\left( {{{\bf{e}}^{ - 11x}} - 2} \right)}}{{{{\bf{e}}^{8x}}\left( {9 - 7{{\bf{e}}^{ - 11x}}} \right)}} = \mathop {\lim }\limits_{x \to \,\infty } \frac{{{{\bf{e}}^{ - 11x}} - 2}}{{9 - 7{{\bf{e}}^{ - 11x}}}} = \frac{{0 - 2}}{{9 - 0}} = \require{bbox} \bbox[2pt,border:1px solid black]{{ - \frac{2}{9}}}\]