Paul's Online Notes
Paul's Online Notes
Home / Calculus II / Series & Sequences / Binomial Series
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 10.18 : Binomial Series

3. Write down the first four terms in the binomial series for \({\left( {1 + 3x} \right)^{ - 6}}\).

Show All Steps Hide All Steps

Start Solution

First, we need to make sure it is in the proper form to use the Binomial Series from the notes which in this case we are already in the proper form with \(k = - 6\).

Show Step 2

Now all we need to do is plug into the formula from the notes and write down the first four terms.

\[\begin{align*}{\left( {1 + 3x} \right)^{ - 6}} & = \sum\limits_{i = 0}^\infty { {-6 \choose i} {{\left( {3x} \right)}^i}} \\ & = 1 + \left( { - 6} \right){\left( {3x} \right)^1} + \frac{{\left( { - 6} \right)\left( { - 7} \right)}}{{2!}}{\left( {3x} \right)^2} + \frac{{\left( { - 6} \right)\left( { - 7} \right)\left( { - 8} \right)}}{{3!}}{\left( {3x} \right)^3} + \cdots \\ & = \require{bbox} \bbox[2pt,border:1px solid black]{{1 - 18x + 189{x^2} - 1512{x^3} + \cdots }}\end{align*}\]