Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.
Section 12.8 : Tangent, Normal and Binormal Vectors
5. Find the unit normal and the binormal vectors for the following vector function.
\[\vec r\left( t \right) = \left\langle {\cos \left( {2t} \right),\sin \left( {2t} \right),3} \right\rangle \]Show All Steps Hide All Steps
Start SolutionWe first need the unit tangent vector so let’s get that.
\[\begin{array}{c}\vec r'\left( t \right) = \left\langle { - 2\sin \left( {2t} \right),2cos\left( {2t} \right),0} \right\rangle \hspace{0.5in}\left\| {\vec r'\left( t \right)} \right\| = \sqrt {4{{\sin }^2}\left( {2t} \right) + 4{{\cos }^2}\left( {2t} \right)} = 2\\ \vec T\left( t \right) = \frac{1}{2}\left\langle { - 2\sin \left( {2t} \right),2cos\left( {2t} \right),0} \right\rangle = \left\langle { - \sin \left( {2t} \right),cos\left( {2t} \right),0} \right\rangle \end{array}\] Show Step 2The unit normal vector is then,
\[\begin{array}{c}\vec T'\left( t \right) = \left\langle { - 2\cos \left( {2t} \right), - 2\sin \left( {2t} \right),0} \right\rangle \hspace{0.5in}\left\| {\vec T'\left( t \right)} \right\| = \sqrt {4{{\cos }^2}\left( {2t} \right) + 4{{\sin }^2}\left( {2t} \right)} = 2\\ \require{bbox} \bbox[2pt,border:1px solid black]{{\vec N\left( t \right) = \frac{1}{2}\left\langle { - 2\cos \left( {2t} \right), - 2\sin \left( {2t} \right),0} \right\rangle = \left\langle { - \cos \left( {2t} \right), - \sin \left( {2t} \right),0} \right\rangle }}\end{array}\] Show Step 3Finally, the binormal vector is,
\[\begin{align*}\vec B\left( t \right) & = \vec T\left( t \right) \times \vec N\left( t \right) = \left| {\begin{array}{*{20}{c}}{\vec i}&{\vec j}&{\vec k}\\{ - \sin \left( {2t} \right)}&{\cos \left( {2t} \right)}&0\\{ - \cos \left( {2t} \right)}&{ - \sin \left( {2t} \right)}&0\end{array}} \right|\\ & = {\sin ^2}\left( {2t} \right)\vec k - \left( { - {{\cos }^2}\left( {2t} \right)\vec k} \right) = \left( {{{\sin }^2}\left( {2t} \right) + {{\cos }^2}\left( {2t} \right)} \right)\vec k = \require{bbox} \bbox[2pt,border:1px solid black]{{\vec k = \left\langle {0,0,1} \right\rangle = \vec B\left( t \right)}}\end{align*}\]