Paul's Online Notes
Home / Calculus III / 3-Dimensional Space / Tangent, Normal and Binormal Vectors
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

### Section 1-8 : Tangent, Normal and Binormal Vectors

5. Find the unit normal and the binormal vectors for the following vector function.

$\vec r\left( t \right) = \left\langle {\cos \left( {2t} \right),\sin \left( {2t} \right),3} \right\rangle$

Show All Steps Hide All Steps

Start Solution

We first need the unit tangent vector so letâ€™s get that.

$\begin{array}{c}\vec r'\left( t \right) = \left\langle { - 2\sin \left( {2t} \right),2cos\left( {2t} \right),0} \right\rangle \hspace{0.5in}\left\| {\vec r'\left( t \right)} \right\| = \sqrt {4{{\sin }^2}\left( {2t} \right) + 4{{\cos }^2}\left( {2t} \right)} = 2\\ \vec T\left( t \right) = \frac{1}{2}\left\langle { - 2\sin \left( {2t} \right),2cos\left( {2t} \right),0} \right\rangle = \left\langle { - \sin \left( {2t} \right),cos\left( {2t} \right),0} \right\rangle \end{array}$ Show Step 2

The unit normal vector is then,

$\begin{array}{c}\vec T'\left( t \right) = \left\langle { - 2\cos \left( {2t} \right), - 2\sin \left( {2t} \right),0} \right\rangle \hspace{0.5in}\left\| {\vec T'\left( t \right)} \right\| = \sqrt {4{{\cos }^2}\left( {2t} \right) + 4{{\sin }^2}\left( {2t} \right)} = 2\\ \require{bbox} \bbox[2pt,border:1px solid black]{{\vec N\left( t \right) = \frac{1}{2}\left\langle { - 2\cos \left( {2t} \right), - 2\sin \left( {2t} \right),0} \right\rangle = \left\langle { - \cos \left( {2t} \right), - \sin \left( {2t} \right),0} \right\rangle }}\end{array}$ Show Step 3

Finally, the binormal vector is,

\begin{align*}\vec B\left( t \right) & = \vec T\left( t \right) \times \vec N\left( t \right) = \left| {\begin{array}{*{20}{c}}{\vec i}&{\vec j}&{\vec k}\\{ - \sin \left( {2t} \right)}&{\cos \left( {2t} \right)}&0\\{ - \cos \left( {2t} \right)}&{ - \sin \left( {2t} \right)}&0\end{array}} \right|\\ & = {\sin ^2}\left( {2t} \right)\vec k - \left( { - {{\cos }^2}\left( {2t} \right)\vec k} \right) = \left( {{{\sin }^2}\left( {2t} \right) + {{\cos }^2}\left( {2t} \right)} \right)\vec k = \require{bbox} \bbox[2pt,border:1px solid black]{{\vec k = \left\langle {0,0,1} \right\rangle = \vec B\left( t \right)}}\end{align*}