Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.
Section 12.11 : Velocity and Acceleration
2. Determine the tangential and normal components of acceleration for the object whose position is given by \(\vec r\left( t \right) = \left\langle {\cos \left( {2t} \right), - \sin \left( {2t} \right),4t} \right\rangle \).
Show All Steps Hide All Steps
Start SolutionFirst, we need the first and second derivatives of the position function.
\[\vec r'\left( t \right) = \left\langle { - 2sin\left( {2t} \right), - 2\cos \left( {2t} \right),4} \right\rangle \hspace{0.25in}\hspace{0.25in}\vec r''\left( t \right) = \left\langle { - 4\cos \left( {2t} \right),4sin\left( {2t} \right),0} \right\rangle \] Show Step 2Next, we’ll need the following quantities.
\[\left\| {\vec r'\left( t \right)} \right\| = \sqrt {4{{\sin }^2}\left( {2t} \right) + 4{{\cos }^2}\left( {2t} \right) + 16} = \sqrt {20} = 2\sqrt 5 \] \[\vec r'\left( t \right)\centerdot \vec r''\left( t \right) = 8\sin \left( {2t} \right)\cos \left( {2t} \right) - 8\sin \left( {2t} \right)\cos \left( {2t} \right) + 0 = 0\] \[\begin{align*}\vec r'\left( t \right) \times \vec r''\left( t \right) & = \left| {\begin{array}{*{20}{c}}{\vec i}&{\vec j}&{\vec k}\\{ - 2sin\left( {2t} \right)}&{ - 2\cos \left( {2t} \right)}&4\\{ - 4\cos \left( {2t} \right)}&{4sin\left( {2t} \right)}&0\end{array}} \right|\\ & = - 16\cos \left( {2t} \right)\vec j - 8{\sin ^2}\left( {2t} \right)\vec k - 8{\cos ^2}\left( {2t} \right)\vec k - 16\sin \left( {2t} \right)\vec i\\ & = - 16\sin \left( {2t} \right)\vec i - 16\cos \left( {2t} \right)\vec j - 8\vec k\end{align*}\] \[\left\| {\vec r'\left( t \right) \times \vec r''\left( t \right)} \right\| = \sqrt {256{{\sin }^2}\left( {2t} \right) + 256{{\cos }^2}\left( {2t} \right) + 64} = \sqrt {320} = 8\sqrt 5 \] Show Step 3The tangential component of the acceleration is,
\[{a_T} = \frac{{\vec r'\left( t \right)\centerdot \vec r''\left( t \right)}}{{\left\| {\vec r'\left( t \right)} \right\|}} = \require{bbox} \bbox[2pt,border:1px solid black]{0}\]The normal component of the acceleration is,
\[{a_N} = \frac{{\left\| {\vec r'\left( t \right) \times \vec r''\left( t \right)} \right\|}}{{\left\| {\vec r'\left( t \right)} \right\|}} = \frac{{8\sqrt 5 }}{{2\sqrt 5 }} = \require{bbox} \bbox[2pt,border:1px solid black]{4}\]