Paul's Online Notes
Paul's Online Notes
Home / Calculus I / Derivatives / Chain Rule
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 3-9 : Chain Rule

For problems 1 – 27 differentiate the given function.

  1. \(f\left( x \right) = {\left( {6{x^2} + 7x} \right)^4}\) Solution
  2. \(g\left( t \right) = {\left( {4{t^2} - 3t + 2} \right)^{ - 2}}\) Solution
  3. \(y = \sqrt[3]{{1 - 8z}}\) Solution
  4. \(R\left( w \right) = \csc \left( {7w} \right)\) Solution
  5. \(G\left( x \right) = 2\sin \left( {3x + \tan \left( x \right)} \right)\) Solution
  6. \(h\left( u \right) = \tan \left( {4 + 10u} \right)\) Solution
  7. \(f\left( t \right) = 5 + {{\bf{e}}^{4t + {t^{\,7}}}}\) Solution
  8. \(g\left( x \right) = {{\bf{e}}^{1 - \cos \left( x \right)}}\) Solution
  9. \(H\left( z \right) = {2^{1 - 6z}}\) Solution
  10. \(u\left( t \right) = {\tan ^{ - 1}}\left( {3t - 1} \right)\) Solution
  11. \(F\left( y \right) = \ln \left( {1 - 5{y^2} + {y^3}} \right)\) Solution
  12. \(V\left( x \right) = \ln \left( {\sin \left( x \right) - \cot \left( x \right)} \right)\) Solution
  13. \(h\left( z \right) = \sin \left( {{z^6}} \right) + {\sin ^6}\left( z \right)\) Solution
  14. \(S\left( w \right) = \sqrt {7w} + {{\bf{e}}^{ - w}}\) Solution
  15. \(g\left( z \right) = 3{z^7} - \sin \left( {{z^2} + 6} \right)\) Solution
  16. \(f\left( x \right) = \ln \left( {\sin \left( x \right)} \right) - {\left( {{x^4} - 3x} \right)^{10}}\) Solution
  17. \(h\left( t \right) = {t^6}\,\sqrt {5{t^2} - t} \) Solution
  18. \(q\left( t \right) = {t^2}\ln \left( {{t^5}} \right)\) Solution
  19. \(g\left( w \right) = \cos \left( {3w} \right)\sec \left( {1 - w} \right)\) Solution
  20. \(\displaystyle y = \frac{{\sin \left( {3t} \right)}}{{1 + {t^2}}}\) Solution
  21. \(\displaystyle K\left( x \right) = \frac{{1 + {{\bf{e}}^{ - 2x}}}}{{x + \tan \left( {12x} \right)}}\) Solution
  22. \(f\left( x \right) = \cos \left( {{x^2}{{\bf{e}}^x}} \right)\) Solution
  23. \(z = \sqrt {5x + \tan \left( {4x} \right)} \) Solution
  24. \(f\left( t \right) = {\left( {{{\bf{e}}^{ - 6t}} + \sin \left( {2 - t} \right)} \right)^3}\) Solution
  25. \(g\left( x \right) = {\left( {\ln \left( {{x^2} + 1} \right) - {{\tan }^{ - 1}}\left( {6x} \right)} \right)^{10}}\) Solution
  26. \(h\left( z \right) = {\tan ^4}\left( {{z^2} + 1} \right)\) Solution
  27. \(f\left( x \right) = {\left( {\sqrt[3]{{12x}} + {{\sin }^2}\left( {3x} \right)} \right)^{ - 1}}\) Solution
  28. Find the tangent line to \(f\left( x \right) = 4\sqrt {2x} - 6{{\bf{e}}^{2 - x}}\) at \(x = 2\). Solution
  29. Determine where \(V\left( z \right) = {z^4}{\left( {2z - 8} \right)^3}\) is increasing and decreasing. Solution
  30. The position of an object is given by \(s\left( t \right) = \sin \left( {3t} \right) - 2t + 4\). Determine where in the interval \(\left[ {0,3} \right]\) the object is moving to the right and moving to the left. Solution
  31. Determine where \(A\left( t \right) = {t^2}{{\bf{e}}^{5 - t}}\) is increasing and decreasing. Solution
  32. Determine where in the interval \(\left[ { - 1,20} \right]\) the function \(f\left( x \right) = \ln \left( {{x^4} + 20{x^3} + 100} \right)\) is increasing and decreasing. Solution