Paul's Online Math Notes
Calculus I (Assignment Problems) / Derivatives / Chain Rule   [Notes] [Practice Problems] [Assignment Problems]

Calculus I - Assignment Problems
Limits Previous Chapter   Next Chapter Applications of Derivatives
Derivatives of Hyperbolic Trig Functions Previous Section   Next Section Implicit Differentiation

 Chain Rule

For problems 1  46 differentiate the given function.

 

1.  

 

2.  

 

3.  

 

4.  

 

5.  

 

6.  

 

7.  

 

8.  

 

9.  

 

10.  

 

11.  

 

12.  

 

13.  

 

14.  

 

15.  

 

16.  

 

17.  

 

18.  

 

19.  

 

20.  

 

21.  

 

22.  

 

23.  

 

24.  

 

25.  

 

26.  

 

27.  

 

28.  

 

29.  

 

30.  

 

31.  

 

32.  

 

33.  

 

34.  

 

35.  

 

36.  

 

37.  

 

38.  

 

39.  

 

40.  

 

41.  

 

42.  

 

43.  

 

44.  

 

45.  

 

46.  

 

47.  

 

48.  

 

49.  

 

50.  

 

51.  

 

52. Find the tangent line to  at .

 

53. Find the tangent line to  at .

 

54. Determine where  is increasing and decreasing.

 

55. Is  increasing or decreasing more in the interval ?

 

56. Determine where   is increasing and decreasing in the interval .

 

57. If the position of an object is given by .  Determine where, if anywhere, the object is not moving in the interval .

 

58. Determine where   is increasing and decreasing in the interval .

 

59. Determine where  is increasing and decreasing.

 

60. What percentage of   is the function  decreasing?

 

61. The position of an object is given by .  During the first 10 hours of motion (assuming the motion starts at  ) what percentage of the time is the object moving to the right?

 

62. For the function  determine each of the following.

      (a) The interval on which the function is defined.

      (b) Where the function is increasing and decreasing.

 

Derivatives of Hyperbolic Trig Functions Previous Section   Next Section Implicit Differentiation
Limits Previous Chapter   Next Chapter Applications of Derivatives

Calculus I (Assignment Problems) / Derivatives / Chain Rule    [Notes] [Practice Problems] [Assignment Problems]

© 2003 - 2017 Paul Dawkins