Paul's Online Notes
Paul's Online Notes
Home / Calculus I / Limits
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Chapter 2 : Limits

Here are a set of practice problems for the Limits chapter of the Calculus I notes.

  1. If you’d like a pdf document containing the solutions the download tab above contains links to pdf’s containing the solutions for the full book, chapter and section. At this time, I do not offer pdf’s for solutions to individual problems.
  2. If you’d like to view the solutions on the web go to the problem set web page, click the solution link for any problem and it will take you to the solution to that problem.

Note that some sections will have more problems than others and some will have more or less of a variety of problems. Most sections should have a range of difficulty levels in the problems although this will vary from section to section.

Here is a list of all the sections for which practice problems have been written as well as a brief description of the material covered in the notes for that particular section.

Tangent Lines and Rates of Change –In this section we will introduce two problems that we will see time and again in this course : Rate of Change of a function and Tangent Lines to functions. Both of these problems will be used to introduce the concept of limits, although we won't formally give the definition or notation until the next section.

The Limit – In this section we will introduce the notation of the limit. We will also take a conceptual look at limits and try to get a grasp on just what they are and what they can tell us. We will be estimating the value of limits in this section to help us understand what they tell us. We will actually start computing limits in a couple of sections.

One-Sided Limits – In this section we will introduce the concept of one-sided limits. We will discuss the differences between one-sided limits and limits as well as how they are related to each other.

Limit Properties – In this section we will discuss the properties of limits that we’ll need to use in computing limits (as opposed to estimating them as we've done to this point). We will also compute a couple of basic limits in this section.

Computing Limits – In this section we will looks at several types of limits that require some work before we can use the limit properties to compute them. We will also look at computing limits of piecewise functions and use of the Squeeze Theorem to compute some limits.

Infinite Limits – In this section we will look at limits that have a value of infinity or negative infinity. We’ll also take a brief look at vertical asymptotes.

Limits At Infinity, Part I – In this section we will start looking at limits at infinity, i.e. limits in which the variable gets very large in either the positive or negative sense. We will concentrate on polynomials and rational expressions in this section. We’ll also take a brief look at horizontal asymptotes.

Limits At Infinity, Part II – In this section we will continue covering limits at infinity. We’ll be looking at exponentials, logarithms and inverse tangents in this section.

Continuity – In this section we will introduce the concept of continuity and how it relates to limits. We will also see the Intermediate Value Theorem in this section and how it can be used to determine if functions have solutions in a given interval.

The Definition of the Limit – In this section we will give a precise definition of several of the limits covered in this section. We will work several basic examples illustrating how to use this precise definition to compute a limit. We’ll also give a precise definition of continuity.