Paul's Online Notes
Paul's Online Notes
Home / Calculus III / Multiple Integrals / Iterated Integrals
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.
Assignment Problems Notice
Please do not email me to get solutions and/or answers to these problems. I will not give them out under any circumstances nor will I respond to any requests to do so. The intent of these problems is for instructors to use them for assignments and having solutions/answers easily available defeats that purpose.

If you are looking for some problems with solutions you can find some by clicking on the "Practice Problems" link above.

Section 15.2 : Iterated Integrals

  1. Compute the following double integral over the indicated rectangle (a) by integrating with respect to x first and (b) by integrating with respect to y first. \[\iint\limits_{R}{{16xy - 9{x^2} + 1\,dA}}\hspace{0.5in}R = \left[ {2,3} \right] \times \left[ { - 1,1} \right]\]
  2. Compute the following double integral over the indicated rectangle (a) by integrating with respect to x first and (b) by integrating with respect to y first. \[\iint\limits_{R}{{\cos \left( x \right)\sin \left( y \right)\,dA}}\hspace{0.5in}R = \left[ {\frac{\pi }{6},\frac{\pi }{4}} \right] \times \left[ {\frac{\pi }{4},\frac{\pi }{3}} \right]\]

For problems 3 – 16 compute the given double integral over the indicated rectangle.

  1. \( \displaystyle \iint\limits_{R}{{8{x^3} - 4\,dA}}\hspace{0.5in}\hspace{0.25in}R = \left[ { - 3, - 1} \right] \times \left[ {0,4} \right]\)
  2. \( \displaystyle \iint\limits_{R}{{15{y^4} + \frac{2}{{{x^2}}}\,dA}}\hspace{0.5in}R = \left[ {1,2} \right] \times \left[ {1,4} \right]\)
  3. \( \displaystyle \iint\limits_{R}{{4y{{\sec }^2}\left( x \right) + \frac{{2x}}{y}\,dA}}\hspace{0.25in}R = \left[ {0,\frac{\pi }{4}} \right] \times \left[ {1,5} \right]\)
  4. \( \displaystyle \iint\limits_{R}{{{y^5} - {x^2}{{\bf{e}}^y}\,dA}}\hspace{0.5in}\hspace{0.25in}R = \left[ { - 1,2} \right] \times \left[ { - 3,3} \right]\)
  5. \( \displaystyle \iint\limits_{R}{{\frac{{{x^3}}}{{1 + {x^4}}} - \frac{1}{{{{\bf{e}}^{3y}}}}\,dA}}\hspace{0.5in}R = \left[ { - 1,0} \right] \times \left[ {0,4} \right]\)
  6. \( \displaystyle \iint\limits_{R}{{x{{\bf{e}}^{{x^{\,2}}}} - 12{x^3}\sin \left( {\pi y} \right)\,dA}}\hspace{0.25in}R = \left[ { - 2,0} \right] \times \left[ {\frac{1}{2},1} \right]\)
  7. \( \displaystyle \iint\limits_{R}{{x\cos \left( {4y + 3{x^2}} \right)\,dA}}\hspace{0.5in}R = \left[ {0,\sqrt \pi } \right] \times \left[ {\frac{\pi }{2},\pi } \right]\)
  8. \( \displaystyle \iint\limits_{R}{{\frac{{\ln \left( {4xy} \right)}}{{xy}}\,dA}}\hspace{0.5in}\hspace{0.25in}R = \left[ {1,2} \right] \times \left[ {3,4} \right]\)
  9. \( \displaystyle \iint\limits_{R}{{{x^2}{y^3}\,{{\bf{e}}^{{x^{\,3}} - {y^{\,4}}}}\,dA}}\hspace{0.5in}R = \left[ {0,1} \right] \times \left[ { - 1,0} \right]\)
  10. \( \displaystyle \iint\limits_{R}{{42y{x^3}{{\left( {1 + {x^2}{y^2}} \right)}^6}\,dA}}\hspace{0.5in}R = \left[ {0,1} \right] \times \left[ {0,2} \right]\)
  11. \( \displaystyle \iint\limits_{R}{{\frac{{\cos \left( {\frac{x}{y}} \right)}}{{{y^3}}}\,dA}}\hspace{0.5in}\hspace{0.25in}R = \left[ {\frac{\pi }{2},\pi } \right] \times \left[ {1,2} \right]\)
  12. \( \displaystyle \iint\limits_{R}{{\frac{{x\cos \left( {\frac{x}{y}} \right)}}{{{y^2}}}\,dA}}\hspace{0.5in}R = \left[ {\frac{\pi }{2},\pi } \right] \times \left[ {1,2} \right]\)
  13. \( \displaystyle \iint\limits_{R}{{2y\ln \left( x \right) - 20{x^3}{y^3}\,dA}}\hspace{0.25in}R = \left[ {1,2} \right] \times \left[ {0,4} \right]\)
  14. \( \displaystyle \iint\limits_{R}{{xy{{\bf{e}}^x}\cos \left( y \right)\,dA}}\hspace{0.5in}R = \left[ {0,1} \right] \times \left[ {0,\pi } \right]\)
  15. Determine the volume that lies under \(f\left( {x,y} \right) = 20 - 3{x^3} - 3{y^2}\) and above the rectangle given by \(\left[ { - 2,2} \right] \times \left[ { - 1,1} \right]\) in the \(xy\)-plane.
  16. Determine the volume that lies under \(f\left( {x,y} \right) = 10 + xy\sin \left( {{x^2} - {y^2}} \right)\) and above the rectangle given by \(\left[ { - 3,0} \right] \times \left[ {1,3} \right]\) in the \(xy\)-plane.