I have been informed that on March 7th from 6:00am to 6:00pm Central Time Lamar University will be doing some maintenance to replace a faulty UPS component and to do this they will be completely powering down their data center.
Unfortunately, this means that the site will be down during this time. I apologize for any inconvenience this might cause.
Paul
February 18, 2026
Section 3.13 : Logarithmic Differentiation
3. Use logarithmic differentiation to find the first derivative of \(\displaystyle h\left( t \right) = \frac{{\sqrt {5t + 8} \,\,\,\sqrt[3]{{1 - 9\cos \left( {4t} \right)}}}}{{\sqrt[4]{{{t^2} + 10t}}}}\).
Show All Steps Hide All Steps
Start SolutionTake the logarithm of both sides and do a little simplifying.
\[\begin{align*}\ln \left[ {h\left( t \right)} \right] & = \ln \left[ {\frac{{\sqrt {5t + 8} \,\,\,\sqrt[3]{{1 - 9\cos \left( {4t} \right)}}}}{{\sqrt[4]{{{t^2} + 10t}}}}} \right]\\ & = \ln \left[ {\sqrt {5t + 8} \,\,\,\sqrt[3]{{1 - 9\cos \left( {4t} \right)}}} \right] - \ln \left[ {\sqrt[4]{{{t^2} + 10t}}} \right]\\ & = \ln \left[ {{{\left( {5t + 8} \right)}^{\frac{1}{2}}}} \right] + \ln \left[ {{{\left( {1 - 9\cos \left( {4t} \right)} \right)}^{\frac{1}{3}}}} \right] - \ln \left[ {{{\left( {{t^2} + 10t} \right)}^{\frac{1}{4}}}} \right]\\ & = {\textstyle{1 \over 2}}\ln \left( {5t + 8} \right) + {\textstyle{1 \over 3}}\ln \left( {1 - 9\cos \left( {4t} \right)} \right) - {\textstyle{1 \over 4}}\ln\left( {{t^2} + 10t} \right)\end{align*}\]Note that the logarithm simplification work was a little complicated for this problem, but if you know your logarithm properties you should be okay with that.
Show Step 2Use implicit differentiation to differentiate both sides with respect to \(t\).
\[\frac{{h'\left( t \right)}}{{h\left( t \right)}} = {\textstyle{1 \over 2}}\frac{5}{{5t + 8}} + {\textstyle{1 \over 3}}\frac{{36\sin \left( {4t} \right)}}{{1 - 9\cos \left( {4t} \right)}} - {\textstyle{1 \over 4}}\frac{{2t + 10}}{{{t^2} + 10t}}\] Show Step 3Finally, solve for the derivative and plug in the equation for \(h\left( t \right)\) .
\[\begin{align*}h'\left( t \right) & = h\left( t \right)\left[ {\frac{{{\textstyle{5 \over 2}}}}{{5t + 8}} + \frac{{12\sin \left( {4t} \right)}}{{1 - 9\cos \left( {4t} \right)}} - \frac{{{\textstyle{1 \over 2}}t + {\textstyle{5 \over 2}}}}{{{t^2} + 10t}}} \right]\\ & = \require{bbox} \bbox[2pt,border:1px solid black]{{\frac{{\sqrt {5t + 8} \,\,\,\sqrt[3]{{1 - 9\cos \left( {4t} \right)}}}}{{\sqrt[4]{{{t^2} + 10t}}}}\left[ {\frac{{{\textstyle{5 \over 2}}}}{{5t + 8}} + \frac{{12\sin \left( {4t} \right)}}{{1 - 9\cos \left( {4t} \right)}} - \frac{{{\textstyle{1 \over 2}}t + {\textstyle{5 \over 2}}}}{{{t^2} + 10t}}} \right]}}\end{align*}\]