Paul's Online Notes
Home / Calculus I / Integrals / Substitution Rule for Definite Integrals
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

### Section 5.8 : Substitution Rule for Definite Integrals

8. Evaluate the following integral, if possible. If it is not possible clearly explain why it is not possible to evaluate the integral.

$\int_{1}^{5}{{\frac{{2{x^3} + x}}{{{x^4} + {x^2} + 1}} - \frac{x}{{{x^2} - 4}}\,dx}}$ Show Solution

Be very careful with this problem. Recall that we can only do definite integrals if the integrand (i.e. the function we are integrating) is continuous on the interval over which we are integrating.

In this case the second term has division by zero at $$x = 2$$ and so is not continuous on $$\left[ {1,5} \right]$$ and therefore this integral can’t be done.