Paul's Online Notes
Home / Calculus III / Surface Integrals / Curl and Divergence
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

### Section 6-1 : Curl and Divergence

3. Determine if the following vector field is conservative.

$\vec F = \left( {4{y^2} + \frac{{3{x^2}y}}{{{z^2}}}} \right)\,\vec i + \left( {8xy + \frac{{{x^3}}}{{{z^2}}}} \right)\vec j + \left( {11 - \frac{{2{x^3}y}}{{{z^3}}}} \right)\vec k$

Show All Steps Hide All Steps

Start Solution

We know all we need to do here is compute the curl of the vector field.

\begin{align*}{\mathop{\rm curl}\nolimits} \vec F = \nabla \times \vec F &= \left| {\begin{array}{*{20}{c}}{\vec i}&{\vec j}&{\vec k}\\{\displaystyle \frac{\partial }{{\partial x}}}&{\displaystyle \frac{\partial }{{\partial y}}}&{\displaystyle \frac{\partial }{{\partial z}}}\\{\displaystyle 4{y^2} + \frac{{3{x^2}y}}{{{z^2}}}}&{\displaystyle 8xy + \frac{{{x^3}}}{{{z^2}}}}&{\displaystyle 11 - \frac{{2{x^3}y}}{{{z^3}}}}\end{array}} \right|\\ & = \frac{\partial }{{\partial y}}\left( {11 - \frac{{2{x^3}y}}{{{z^3}}}} \right)\vec i + \frac{\partial }{{\partial z}}\left( {4{y^2} + \frac{{3{x^2}y}}{{{z^2}}}} \right)\vec j + \frac{\partial }{{\partial x}}\left( {8xy + \frac{{{x^3}}}{{{z^2}}}} \right)\vec k\\ & \hspace{0.25in}\hspace{0.25in}\hspace{0.25in}\,\,\,\,\,\, - \frac{\partial }{{\partial y}}\left( {4{y^2} + \frac{{3{x^2}y}}{{{z^2}}}} \right)\vec k - \frac{\partial }{{\partial x}}\left( {11 - \frac{{2{x^3}y}}{{{z^3}}}} \right)\vec j - \frac{\partial }{{\partial z}}\left( {8xy + \frac{{{x^3}}}{{{z^2}}}} \right)\vec i\\ & = - \frac{{2{x^3}}}{{{z^3}}}\vec i - \frac{{6{x^2}y}}{{{z^3}}}\vec j + \left( {8y + \frac{{3{x^2}}}{{{z^2}}}} \right)\vec k - \left( {8y + \frac{{3{x^2}}}{{{z^2}}}} \right)\vec k + \frac{{6{x^2}y}}{{{z^3}}}\vec j + \frac{{2{x^3}}}{{{z^3}}}\vec i\\ & = \underline {\vec 0} \end{align*} Show Step 2

So, we found that $${\mathop{\rm curl}\nolimits} \vec F = \vec 0$$ for this vector field and so the vector field is conservative.