Section 17.2 : Parametric Surfaces
10. Determine the surface area of the portion of the surface given by the following parametric equation that lies inside the cylinder \({u^2} + {v^2} = 4\).
\[\vec r\left( {u,v} \right) = \left\langle {2u,vu,1 - 2v} \right\rangle \]Show All Steps Hide All Steps
Start SolutionWe’ve already been given the parameterization of the surface in the problem statement so we don’t need to worry about that for this problem. All we really need to do yet is to acknowledge that we’ll need to restrict \(u\) and \(v\) to the disk \({u^2} + {v^2} \le 4\).
Show Step 2Next, we need to compute \({\vec r_u} \times {\vec r_v}\). Here is that work.
\[{\vec r_u} = \left\langle {2,v,0} \right\rangle \hspace{0.5in}{\vec r_v} = \left\langle {0,u, - 2} \right\rangle \] \[{\vec r_u} \times {\vec r_v} = \left| {\begin{array}{*{20}{c}}{\vec i}&{\vec j}&{\vec k}\\2&v&0\\0&u&{ - 2}\end{array}} \right| = - 2v\vec i + 4\vec j + 2u\vec k\]Now, we what we really need is,
\[\left\| {{{\vec r}_u} \times {{\vec r}_v}} \right\| = \sqrt {{{\left( { - 2v} \right)}^2} + {{\left( 4 \right)}^2} + {{\left( {2u} \right)}^2}} = \sqrt {4{u^2} + 4{v^2} + 16} = 2\sqrt {{u^2} + {v^2} + 4} \] Show Step 3The integral for the surface area is then,
\[A = \iint\limits_{D}{{2\sqrt {{u^2} + {v^2} + 4} \,dA}}\]Where \(D\) is the disk \({u^2} + {v^2} \le 4\).
Show Step 4Because \(D\) is a disk the best bet for this integral is to use the following “version” of polar coordinates.
\[u = r\cos \theta \hspace{0.25in} v = r\sin \theta \hspace{0.25in} {u^2} + {v^2} = {r^2} \hspace{0.25in} dA = r\,dr\,d\theta \]The polar coordinate limits for this \(D\) is,
\[\begin{array}{c}0 \le \theta \le 2\pi \\ 0 \le r \le 2\end{array}\]So, the integral to converting to polar coordinates gives,
\[A = \iint\limits_{D}{{2\sqrt {{u^2} + {v^2} + 4} \,dA}} = \int_{0}^{{2\pi }}{{\int_{0}^{2}{{2r\sqrt {{r^2} + 4} \,dr}}\,d\theta }}\] Show Step 5Now we just need to evaluate the integral to get the surface area.
\[\begin{align*}A & = \int_{0}^{{2\pi }}{{\int_{0}^{2}{{2r\sqrt {{r^2} + 4} \,dr}}\,d\theta }} = \int_{0}^{{2\pi }}{{\left. {\frac{2}{3}{{\left( {{r^2} + 4} \right)}^{\frac{3}{2}}}} \right|_0^2\,d\theta }}\\ & = \int_{0}^{{2\pi }}{{\frac{2}{3}\left( {{8^{\frac{3}{2}}} - {4^{\frac{3}{2}}}} \right)\,d\theta }} = \left. {\frac{2}{3}\left( {{8^{\frac{3}{2}}} - 8} \right)\theta } \right|_0^{2\pi } = \require{bbox} \bbox[2pt,border:1px solid black]{{\frac{{32}}{3}\pi\left( {\sqrt 8 - 1} \right) = 61.2712}}\end{align*}\]