Section 13.2 : Partial Derivatives
9. Find ∂z∂x and ∂z∂y for the following function.
x2sin(y3)+xe3z−cos(z2)=3y−6z+8Show All Steps Hide All Steps
Start SolutionOkay, we are basically being asked to do implicit differentiation here and recall that we are assuming that z is in fact z(x,y) when we do our derivative work.
Let’s get ∂z∂x first and that requires us to differentiate with respect to x. Just recall that any product involving x and z will require the product rule because we’re assuming that z is a function of x. Also recall to properly chain rule any derivative of z to pick up the ∂z∂x when differentiating the “inside” function.
Differentiating the equation with respect to x gives,
2xsin(y3)+e3z+3∂z∂xxe3z+2z∂z∂xsin(z2)=−6∂z∂xSolving for ∂z∂x gives,
2x\sin \left( {{y^3}} \right) + {{\bf{e}}^{3z}} = \left( { - 6 - 3x{{\bf{e}}^{3z}} - 2z\sin \left( {{z^2}} \right)} \right)\frac{{\partial z}}{{\partial x}}\hspace{0.5in} \to \hspace{0.5in} \require{bbox} \bbox[2pt,border:1px solid black]{{\frac{{\partial z}}{{\partial x}} = \frac{{2x\sin \left( {{y^3}} \right) + {{\bf{e}}^{3z}}}}{{ - 6 - 3x{{\bf{e}}^{3z}} - 2z\sin \left( {{z^2}} \right)}}}} Show Step 2Now we get to do it all over again except this time we’ll differentiate with respect to y in order to find \frac{{\partial z}}{{\partial y}}. So, differentiating gives,
3{y^2}{x^2}\cos \left( {{y^3}} \right) + 3\frac{{\partial z}}{{\partial y}}x{{\bf{e}}^{3z}} + 2z\frac{{\partial z}}{{\partial y}}sin\left( {{z^2}} \right) = 3 - 6\frac{{\partial z}}{{\partial y}}Solving for \frac{{\partial z}}{{\partial y}} gives,
3{y^2}{x^2}\cos \left( {{y^3}} \right) - 3 = \left( { - 6 - 3x{{\bf{e}}^{3z}} - 2zsin\left( {{z^2}} \right)} \right)\frac{{\partial z}}{{\partial y}}\hspace{0.5in} \to \hspace{0.5in} \require{bbox} \bbox[2pt,border:1px solid black]{{\frac{{\partial z}}{{\partial y}} = \frac{{3{y^2}{x^2}\cos \left( {{y^3}} \right) - 3}}{{ - 6 - 3x{{\bf{e}}^{3z}} - 2zsin\left( {{z^2}} \right)}}}}