Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.
Section 1.3 : Radicals
For problems 1 – 4 write the expression in exponential form.
- \(\sqrt[7]{y}\) Solution
- \(\sqrt[3]{{{x^2}}}\) Solution
- \(\sqrt[6]{{ab}}\) Solution
- \(\sqrt {{w^2}{v^3}} \) Solution
For problems 5 – 7 evaluate the radical.
For problems 8 – 12 simplify each of the following. Assume that x, y and z are all positive.
- \(\sqrt[3]{{{x^8}}}\) Solution
- \(\sqrt {8{y^3}} \) Solution
- \(\sqrt[4]{{{x^7}{y^{20}}{z^{11}}}}\) Solution
- \(\sqrt[3]{{54{x^6}{y^7}{z^2}}}\) Solution
- \(\sqrt[4]{{4{x^3}y}}\,\,\sqrt[4]{{8{x^2}{y^3}{z^5}}}\) Solution
For problems 13 – 15 multiply each of the following. Assume that x is positive.
- \(\sqrt x \left( {4 - 3\sqrt x } \right)\) Solution
- \(\left( {2\sqrt x + 1} \right)\left( {3 - 4\sqrt x } \right)\) Solution
- \(\left( {\sqrt[3]{x} + 2\,\,\sqrt[3]{{{x^2}}}} \right)\left( {4 - \sqrt[3]{{{x^2}}}} \right)\) Solution
For problems 16 – 19 rationalize the denominator. Assume that x and y are both positive.