Paul's Online Notes
Home / Algebra / Polynomial Functions / Zeroes/Roots of Polynomials
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

### Section 5.2 : Zeroes/Roots of Polynomials

For problems 1 – 3 list all of the zeros of the polynomial and give their multiplicities.

1. $$f\left( x \right) = 2{x^2} + 13x - 7$$ Solution
2. $$g\left( x \right) = {x^6} - 3{x^5} - 6{x^4} + 10{x^3} + 21{x^2} + 9x = x{\left( {x - 3} \right)^2}{\left( {x + 1} \right)^3}$$ Solution
3. \begin{align*}A\left( x \right) & = {x^8} + 2{x^7} - 29{x^6} - 76{x^5} + 199{x^4} + 722{x^3} + 261{x^2} - 648x - 432\\ & = {\left( {x + 1} \right)^2}{\left( {x - 4} \right)^2}\left( {x - 1} \right){\left( {x + 3} \right)^3}\end{align*} Solution

For problems 4 – 6 $$x = r$$ is a root of the given polynomial. Find the other two roots and write the polynomial in fully factored form.

1. $$P\left( x \right) = {x^3} - 6{x^2} - 16x$$ ; $$r = - 2$$ Solution
2. $$P\left( x \right) = {x^3} - 7{x^2} - 6x + 72$$ ; $$r = 4$$ Solution
3. $$P\left( x \right) = 3{x^3} + 16{x^2} - 33x + 14$$ ; $$r = - 7$$ Solution