Paul's Online Notes
Paul's Online Notes
Home / Calculus I / Applications of Derivatives / Critical Points
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 4.2 : Critical Points

Determine the critical points of each of the following functions.

  1. \(f\left( x \right) = 8{x^3} + 81{x^2} - 42x - 8\) Solution
  2. \(R\left( t \right) = 1 + 80{t^3} + 5{t^4} - 2{t^5}\) Solution
  3. \(g\left( w \right) = 2{w^3} - 7{w^2} - 3w - 2\) Solution
  4. \(g\left( x \right) = {x^6} - 2{x^5} + 8{x^4}\) Solution
  5. \(h\left( z \right) = 4{z^3} - 3{z^2} + 9z + 12\) Solution
  6. \(Q\left( x \right) = {\left( {2 - 8x} \right)^4}{\left( {{x^2} - 9} \right)^3}\) Solution
  7. \(\displaystyle f\left( z \right) = \frac{{z + 4}}{{2{z^2} + z + 8}}\) Solution
  8. \(\displaystyle R\left( x \right) = \frac{{1 - x}}{{{x^2} + 2x - 15}}\) Solution
  9. \(r\left( y \right) = \sqrt[5]{{{y^2} - 6y}}\) Solution
  10. \(h\left( t \right) = 15 - \left( {3 - t} \right){\left[ {{t^2} - 8t + 7} \right]^{\frac{1}{3}}}\) Solution
  11. \(s\left( z \right) = 4\cos \left( z \right) - z\) Solution
  12. \(\displaystyle f\left( y \right) = \sin \left( \frac{y}{3} \right) + \frac{2y}{9}\) Solution
  13. \(V\left( t \right) = {\sin ^2}\left( {3t} \right) + 1\) Solution
  14. \(f\left( x \right) = 5x\,{{\bf{e}}^{9 - 2x}}\) Solution
  15. \(g\left( w \right) = {{\bf{e}}^{{w^{\,3}} - 2{w^{\,2}} - 7w}}\) Solution
  16. \(R\left( x \right) = \ln \left( {{x^2} + 4x + 14} \right)\) Solution
  17. \(A\left( t \right) = 3t - 7\ln \left( {8t + 2} \right)\) Solution