Paul's Online Notes
Home / Calculus II / Vectors / Vector Arithmetic
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

### Section 11.2 : Vector Arithmetic

1. Given $$\vec a = \left\langle {8,5} \right\rangle$$ and $$\vec b = \left\langle { - 3,6} \right\rangle$$ compute each of the following.
1. $$6\vec a$$
2. $$7\vec b - 2\vec a$$
3. $$\left\| {10\vec a + 3\vec b} \right\|$$
Solution
2. Given $$\vec u = 8\vec i - \vec j + 3\vec k$$ and $$\vec v = 7\vec j - 4\vec k$$ compute each of the following.
1. $$- 3\vec v$$
2. $$12\vec u + \vec v$$
3. $$\left\| { - 9\vec v - 2\vec u} \right\|$$
Solution
3. Find a unit vector that points in the same direction as $$\vec q = \vec i + 3\vec j + 9\vec k$$. Solution
4. Find a vector that points in the same direction as $$\vec c = \left\langle { - 1,4} \right\rangle$$ with a magnitude of 10. Solution
5. Determine if $$\vec a = \left\langle {3, - 5,1} \right\rangle$$ and $$\vec b = \left\langle {6, - 2,2} \right\rangle$$ are parallel vectors. Solution
6. Determine if $$\vec v = 9\vec i - 6\vec j - 24\vec k$$ and $$\vec w = \left\langle { - 15,10,40} \right\rangle$$ are parallel vectors. Solution
7. Prove the property : $$\vec v + \vec w = \vec w + \vec v$$. Solution