Paul's Online Notes
Paul's Online Notes
Home / Calculus II / Parametric Equations and Polar Coordinates
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.
Assignment Problems Notice
Please do not email me to get solutions and/or answers to these problems. I will not give them out under any circumstances nor will I respond to any requests to do so. The intent of these problems is for instructors to use them for assignments and having solutions/answers easily available defeats that purpose.

If you are looking for some problems with solutions you can find some by clicking on the "Practice Problems" link above.

Chapter 9 : Parametric Equations and Polar Coordinates

Here are a set of assignment problems for the Parametric Equations and Polar Coordinates chapter of the Calculus II notes. Please note that these problems do not have any solutions available. These are intended mostly for instructors who might want a set of problems to assign for turning in. Having solutions available (or even just final answers) would defeat the purpose the problems.

If you are looking for some practice problems (with solutions available) please check out the Practice Problems. There you will find a set of problems that should give you quite a bit practice.

Here is a list of all the sections for which assignment problems have been written as well as a brief description of the material covered in the notes for that particular section.

Parametric Equations and Curves – In this section we will introduce parametric equations and parametric curves (i.e. graphs of parametric equations). We will graph several sets of parametric equations and discuss how to eliminate the parameter to get an algebraic equation which will often help with the graphing process.

Tangents with Parametric Equations – In this section we will discuss how to find the derivatives \(\frac{dy}{dx}\) and \(\frac{d^{2}y}{dx^{2}}\) for parametric curves. We will also discuss using these derivative formulas to find the tangent line for parametric curves as well as determining where a parametric curve in increasing/decreasing and concave up/concave down.

Area with Parametric Equations – In this section we will discuss how to find the area between a parametric curve and the \(x\)-axis using only the parametric equations (rather than eliminating the parameter and using standard Calculus I techniques on the resulting algebraic equation).

Arc Length with Parametric Equations – In this section we will discuss how to find the arc length of a parametric curve using only the parametric equations (rather than eliminating the parameter and using standard Calculus techniques on the resulting algebraic equation).

Surface Area with Parametric Equations – In this section we will discuss how to find the surface area of a solid obtained by rotating a parametric curve about the \(x\) or \(y\)-axis using only the parametric equations (rather than eliminating the parameter and using standard Calculus techniques on the resulting algebraic equation).

Polar Coordinates – In this section we will introduce polar coordinates an alternative coordinate system to the ‘normal’ Cartesian/Rectangular coordinate system. We will derive formulas to convert between polar and Cartesian coordinate systems. We will also look at many of the standard polar graphs as well as circles and some equations of lines in terms of polar coordinates.

Tangents with Polar Coordinates – In this section we will discuss how to find the derivative \(\frac{dy}{dx}\) for polar curves. We will also discuss using this derivative formula to find the tangent line for polar curves using only polar coordinates (rather than converting to Cartesian coordinates and using standard Calculus techniques).

Area with Polar Coordinates – In this section we will discuss how to the area enclosed by a polar curve. The regions we look at in this section tend (although not always) to be shaped vaguely like a piece of pie or pizza and we are looking for the area of the region from the outer boundary (defined by the polar equation) and the origin/pole. We will also discuss finding the area between two polar curves.

Arc Length with Polar Coordinates – In this section we will discuss how to find the arc length of a polar curve using only polar coordinates (rather than converting to Cartesian coordinates and using standard Calculus techniques).

Surface Area with Polar Coordinates – In this section we will discuss how to find the surface area of a solid obtained by rotating a polar curve about the \(x\) or \(y\)-axis using only polar coordinates (rather than converting to Cartesian coordinates and using standard Calculus techniques).

Arc Length and Surface Area Revisited – In this section we will summarize all the arc length and surface area formulas we developed over the course of the last two chapters.