Paul's Online Notes
Paul's Online Notes
Home / Calculus III / Partial Derivatives
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.
Assignment Problems Notice
Please do not email me to get solutions and/or answers to these problems. I will not give them out under any circumstances nor will I respond to any requests to do so. The intent of these problems is for instructors to use them for assignments and having solutions/answers easily available defeats that purpose.

If you are looking for some problems with solutions you can find some by clicking on the "Practice Problems" link above.

Chapter 13 : Partial Derivatives

Here are a set of assignment problems for the Partial Derivatives chapter of the Calculus III notes. Please note that these problems do not have any solutions available. These are intended mostly for instructors who might want a set of problems to assign for turning in. Having solutions available (or even just final answers) would defeat the purpose the problems.

If you are looking for some practice problems (with solutions available) please check out the Practice Problems. There you will find a set of problems that should give you quite a bit practice.

Here is a list of all the sections for which assignment problems have been written as well as a brief description of the material covered in the notes for that particular section.

Limits – In the section we’ll take a quick look at evaluating limits of functions of several variables. We will also see a fairly quick method that can be used, on occasion, for showing that some limits do not exist.

Partial Derivatives – In this section we will look at the idea of partial derivatives. We will give the formal definition of the partial derivative as well as the standard notations and how to compute them in practice (i.e. without the use of the definition). As you will see if you can do derivatives of functions of one variable you won’t have much of an issue with partial derivatives. There is only one (very important) subtlety that you need to always keep in mind while computing partial derivatives.

Interpretations of Partial Derivatives – In the section we will take a look at a couple of important interpretations of partial derivatives. First, the always important, rate of change of the function. Although we now have multiple ‘directions’ in which the function can change (unlike in Calculus I). We will also see that partial derivatives give the slope of tangent lines to the traces of the function.

Higher Order Partial Derivatives – In the section we will take a look at higher order partial derivatives. Unlike Calculus I however, we will have multiple second order derivatives, multiple third order derivatives, etc. because we are now working with functions of multiple variables. We will also discuss Clairaut’s Theorem to help with some of the work in finding higher order derivatives.

Differentials – In this section we extend the idea of differentials we first saw in Calculus I to functions of several variables.

Chain Rule – In the section we extend the idea of the chain rule to functions of several variables. In particular, we will see that there are multiple variants to the chain rule here all depending on how many variables our function is dependent on and how each of those variables can, in turn, be written in terms of different variables. We will also give a nice method for writing down the chain rule for pretty much any situation you might run into when dealing with functions of multiple variables. In addition, we will derive a very quick way of doing implicit differentiation so we no longer need to go through the process we first did back in Calculus I.

Directional Derivatives – In the section we introduce the concept of directional derivatives. With directional derivatives we can now ask how a function is changing if we allow all the independent variables to change rather than holding all but one constant as we had to do with partial derivatives. In addition, we will define the gradient vector to help with some of the notation and work here. The gradient vector will be very useful in some later sections as well. We will also give a nice fact that will allow us to determine the direction in which a given function is changing the fastest.