Paul's Online Notes
Paul's Online Notes
Home / Calculus II / 3-Dimensional Space / The 3-D Coordinate System
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 12.1 : The 3-D Coordinate System

2. Which of the points \(P = \left( {4, - 2,6} \right)\) and \(Q = \left( { - 6, - 3,2} \right)\) is closest to the \(yz\)-plane?

Show All Steps Hide All Steps

Start Solution

The shortest distance between any point and any of the coordinate planes will be the distance between that point and its projection onto that plane.

Let’s call the projections of \(P\) and Q onto the \(yz\)-plane \(\overline{P}\) and \(\overline{Q}\) respectively. They are,

\[\overline{P} = \left( {0, - 2,6} \right)\hspace{0.75in}\hspace{0.25in}\overline{Q} = \left( {0, - 3,2} \right)\] Show Step 2

To determine which of these is closest to the \(yz\)-plane we just need to compute the distance between the point and its projection onto the \(yz\)-plane.

Note as well that because only the \(x\)-coordinate of the two points are different the distance between the two points will just be the absolute value of the difference between two \(x\) coordinates.

Therefore,

\[d\left( {P,\overline{P}} \right) = 4\hspace{0.75in}d\left( {Q,\overline{Q}} \right) = 6\]

Based on this is should be pretty clear that \(P = \left( {4, - 2,6} \right)\) is closest to the \(yz\)-plane.