Paul's Online Notes
Paul's Online Notes
Home / Calculus II / Vectors / Dot Product
Show Mobile Notice Show All Notes Hide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 11.3 : Dot Product

For problems 1 – 3 determine the dot product, \(\vec a\centerdot \vec b\).

  1. \(\vec a = \left\langle {9,5, - 4,2} \right\rangle \), \(\vec b = \left\langle { - 3, - 2,7, - 1} \right\rangle \) Solution
  2. \(\vec a = \left\langle {0,4, - 2} \right\rangle \) , \(\vec b = 2\vec i - \vec j + 7\vec k\) Solution
  3. \(\left\| {\vec a} \right\| = 5\), \(\displaystyle \left\| {\vec b} \right\| = \frac{3}{7}\) and the angle between the two vectors is \(\displaystyle \theta = \frac{\pi }{{12}}\). Solution

For problems 4 & 5 determine the angle between the two vectors.

  1. \(\vec v = \left\langle {1,2,3,4} \right\rangle \), \(\vec w = \left\langle {0, - 1,4, - 2} \right\rangle \) Solution
  2. \(\vec a = \vec i + 3\vec j - 2\vec k\), \(\vec b = \left\langle { - 9,1, - 5} \right\rangle \) Solution

For problems 6 – 8 determine if the two vectors are parallel, orthogonal or neither.

  1. \(\vec q = \left\langle {4, - 2,7} \right\rangle \), \(\vec p = - 3\vec i + \vec j + 2\vec k\) Solution
  2. \(\vec a = \left\langle {3,10} \right\rangle \), \(\vec b = \left\langle {4, - 1} \right\rangle \) Solution
  3. \(\vec w = \vec i + 4\vec j - 2\vec k\), \(\vec v = - 3\vec i - 12\vec j + 6\vec k\) Solution
  4. Given \(\vec a = \left\langle { - 8,2} \right\rangle \) and \(\vec b = \left\langle { - 1, - 7} \right\rangle \) compute \({{\mathop{\rm proj}\nolimits} _{\,\vec a}}\,\vec b\). Solution
  5. Given \(\vec u = 7\vec i - \vec j + \vec k\) and \(\vec w = - 2\vec i + 5\vec j - 6\vec k\) compute \({{\mathop{\rm proj}\nolimits} _{\,\vec w}}\,\vec u\). Solution
  6. Determine the direction cosines and direction angles for \(\displaystyle \vec r = \left\langle { - 3, - \frac{1}{4},1} \right\rangle \). Solution