Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.
Section 3.9 : Chain Rule
For problems 1 – 27 differentiate the given function.
- \(f\left( x \right) = {\left( {6{x^2} + 7x} \right)^4}\) Solution
- \(g\left( t \right) = {\left( {4{t^2} - 3t + 2} \right)^{ - 2}}\) Solution
- \(y = \sqrt[3]{{1 - 8z}}\) Solution
- \(R\left( w \right) = \csc \left( {7w} \right)\) Solution
- \(G\left( x \right) = 2\sin \left( {3x + \tan \left( x \right)} \right)\) Solution
- \(h\left( u \right) = \tan \left( {4 + 10u} \right)\) Solution
- \(f\left( t \right) = 5 + {{\bf{e}}^{4t + {t^{\,7}}}}\) Solution
- \(g\left( x \right) = {{\bf{e}}^{1 - \cos \left( x \right)}}\) Solution
- \(H\left( z \right) = {2^{1 - 6z}}\) Solution
- \(u\left( t \right) = {\tan ^{ - 1}}\left( {3t - 1} \right)\) Solution
- \(F\left( y \right) = \ln \left( {1 - 5{y^2} + {y^3}} \right)\) Solution
- \(V\left( x \right) = \ln \left( {\sin \left( x \right) - \cot \left( x \right)} \right)\) Solution
- \(h\left( z \right) = \sin \left( {{z^6}} \right) + {\sin ^6}\left( z \right)\) Solution
- \(S\left( w \right) = \sqrt {7w} + {{\bf{e}}^{ - w}}\) Solution
- \(g\left( z \right) = 3{z^7} - \sin \left( {{z^2} + 6} \right)\) Solution
- \(f\left( x \right) = \ln \left( {\sin \left( x \right)} \right) - {\left( {{x^4} - 3x} \right)^{10}}\) Solution
- \(h\left( t \right) = {t^6}\,\sqrt {5{t^2} - t} \) Solution
- \(q\left( t \right) = {t^2}\ln \left( {{t^5}} \right)\) Solution
- \(g\left( w \right) = \cos \left( {3w} \right)\sec \left( {1 - w} \right)\) Solution
- \(\displaystyle y = \frac{{\sin \left( {3t} \right)}}{{1 + {t^2}}}\) Solution
- \(\displaystyle K\left( x \right) = \frac{{1 + {{\bf{e}}^{ - 2x}}}}{{x + \tan \left( {12x} \right)}}\) Solution
- \(f\left( x \right) = \cos \left( {{x^2}{{\bf{e}}^x}} \right)\) Solution
- \(z = \sqrt {5x + \tan \left( {4x} \right)} \) Solution
- \(f\left( t \right) = {\left( {{{\bf{e}}^{ - 6t}} + \sin \left( {2 - t} \right)} \right)^3}\) Solution
- \(g\left( x \right) = {\left( {\ln \left( {{x^2} + 1} \right) - {{\tan }^{ - 1}}\left( {6x} \right)} \right)^{10}}\) Solution
- \(h\left( z \right) = {\tan ^4}\left( {{z^2} + 1} \right)\) Solution
- \(f\left( x \right) = {\left( {\sqrt[3]{{12x}} + {{\sin }^2}\left( {3x} \right)} \right)^{ - 1}}\) Solution
- Find the tangent line to \(f\left( x \right) = 4\sqrt {2x} - 6{{\bf{e}}^{2 - x}}\) at \(x = 2\). Solution
- Determine where \(V\left( z \right) = {z^4}{\left( {2z - 8} \right)^3}\) is increasing and decreasing. Solution
- The position of an object is given by \(s\left( t \right) = \sin \left( {3t} \right) - 2t + 4\). Determine where in the interval \(\left[ {0,3} \right]\) the object is moving to the right and moving to the left. Solution
- Determine where \(A\left( t \right) = {t^2}{{\bf{e}}^{5 - t}}\) is increasing and decreasing. Solution
- Determine where in the interval \(\left[ { - 1,20} \right]\) the function \(f\left( x \right) = \ln \left( {{x^4} + 20{x^3} + 100} \right)\) is increasing and decreasing. Solution