Paul's Online Notes
Paul's Online Notes
Home / Calculus I / Review / Functions
Show General Notice Show Mobile Notice Show All Notes Hide All Notes
General Notice

I have been informed that on March 7th from 6:00am to 6:00pm Central Time Lamar University will be doing some maintenance to replace a faulty UPS component and to do this they will be completely powering down their data center.

Unfortunately, this means that the site will be down during this time. I apologize for any inconvenience this might cause.

Paul
February 18, 2026

Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 1.1 : Functions

For problems 1 – 4 the given functions perform the indicated function evaluations.

  1. \(f\left( x \right) = 3 - 5x - 2{x^2} \) Solution
    1. \(f\left( 4 \right) \)
    2. \(f\left( 0 \right)\)
    3. \(f\left( { - 3} \right) \)
    1. \(f\left( {6 - t} \right) \)
    2. \(f\left( {7 - 4x} \right)\)
    3. \(f\left( {x + h} \right) \)
  2. \(\displaystyle g\left( t \right) = \frac{t}{{2t + 6}} \) Solution
    1. \(g\left( 0 \right) \)
    2. \(g\left( { - 3} \right)\)
    3. \(g\left( {10} \right) \)
    1. \(g\left( {{x^2}} \right) \)
    2. \(g\left( {t + h} \right)\)
    3. \(g\left( {{t^2} - 3t + 1} \right) \)
  3. \(h\left( z \right) = \sqrt {1 - {z^2}} \) Solution
    1. \(h\left( 0 \right) \)
    2. \(h\left( { - \frac{1}{2}} \right)\)
    3. \(h\left( {\frac{1}{2}} \right) \)
    1. \(h\left( {9z} \right) \)
    2. \(h\left( {{z^2} - 2z} \right) \)
    3. \(h\left( {z + k} \right) \)
  4. \(\displaystyle R\left( x \right) = \sqrt {3 + x} - \frac{4}{{x + 1}} \) Solution
    1. \(R\left( 0 \right) \)
    2. \(R\left( 6 \right)\)
    3. \(R\left( { - 9} \right) \)
    1. \(R\left( {x + 1} \right)\)
    2. \(R\left( {{x^4} - 3} \right)\)
    3. \(R\left( {\frac{1}{x} - 1} \right) \)

The difference quotient of a function \(f\left( x \right) \) is defined to be,

\[\frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\]

For problems 5 – 9 compute the difference quotient of the given function.

  1. \(f\left( x \right) = 4x - 9 \) Solution
  2. \(g\left( x \right) = 6 - {x^2} \) Solution
  3. \(f\left( t \right) = 2{t^2} - 3t + 9 \) Solution
  4. \(\displaystyle y\left( z \right) = \frac{1}{{z + 2}} \) Solution
  5. \(\displaystyle A\left( t \right) = \frac{{2t}}{{3 - t}} \) Solution

For problems 10 – 17 determine all the roots of the given function.

  1. \(f\left( x \right) = {x^5} - 4{x^4} - 32{x^3} \) Solution
  2. \(R\left( y \right) = 12{y^2} + 11y - 5 \) Solution
  3. \(h\left( t \right) = 18 - 3t - 2{t^2} \) Solution
  4. \(g\left( x \right) = {x^3} + 7{x^2} - x \) Solution
  5. \(W\left( x \right) = {x^4} + 6{x^2} - 27 \) Solution
  6. \(f\left( t \right) = {t^{\frac{5}{3}}} - 7{t^{\frac{4}{3}}} - 8t \) Solution
  7. \(\displaystyle h\left( z \right) = \frac{z}{{z - 5}} - \frac{4}{{z - 8}} \) Solution
  8. \(\displaystyle g\left( w \right) = \frac{{2w}}{{w + 1}} + \frac{{w - 4}}{{2w - 3}} \) Solution

For problems 18 – 22 find the domain and range of the given function.

  1. \(Y\left( t \right) = 3{t^2} - 2t + 1 \) Solution
  2. \(g\left( z \right) = - {z^2} - 4z + 7 \) Solution
  3. \(f\left( z \right) = 2 + \sqrt {{z^2} + 1} \) Solution
  4. \(h\left( y \right) = - 3\sqrt {14 + 3y} \) Solution
  5. \(M\left( x \right) = 5 - \left| {x + 8} \right| \) Solution

For problems 23 – 32 find the domain of the given function.

  1. \(\displaystyle f\left( w \right) = \frac{{{w^3} - 3w + 1}}{{12w - 7}} \) Solution
  2. \(\displaystyle R\left( z \right) = \frac{5}{{{z^3} + 10{z^2} + 9z}} \) Solution
  3. \(\displaystyle g\left( t \right) = \frac{{6t - {t^3}}}{{7 - t - 4{t^2}}} \) Solution
  4. \(g\left( x \right) = \sqrt {25 - {x^2}} \) Solution
  5. \(h\left( x \right) = \sqrt {{x^4} - {x^3} - 20{x^2}} \) Solution
  6. \(\displaystyle P\left( t \right) = \frac{{5t + 1}}{{\sqrt {{t^3} - {t^2} - 8t} }} \) Solution
  7. \(f\left( z \right) = \sqrt {z - 1} + \sqrt {z + 6} \) Solution
  8. \(\displaystyle h\left( y \right) = \sqrt {2y + 9} - \frac{1}{{\sqrt {2 - y} }} \) Solution
  9. \(\displaystyle A\left( x \right) = \frac{4}{{x - 9}} - \sqrt {{x^2} - 36} \) Solution
  10. \(Q\left( y \right) = \sqrt {{y^2} + 1} - \sqrt[3]{{1 - y}} \) Solution

For problems 33 – 36 compute \(\left( {f \circ g} \right)\left( x \right) \) and \(\left( {g \circ f} \right)\left( x \right) \) for each of the given pair of functions.

  1. \(f\left( x \right) = 4x - 1 \), \(g\left( x \right) = \sqrt {6 + 7x} \) Solution
  2. \(f\left( x \right) = 5x + 2 \), \(g\left( x \right) = {x^2} - 14x \) Solution
  3. \(f\left( x \right) = {x^2} - 2x + 1 \), \(g\left( x \right) = 8 - 3{x^2} \) Solution
  4. \(f\left( x \right) = {x^2} + 3 \), \(g\left( x \right) = \sqrt {5 + {x^2}} \) Solution