Processing math: 100%
Paul's Online Notes
Paul's Online Notes
Home / Calculus III / Surface Integrals / Divergence Theorem
Hide Mobile Notice  
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 17.6 : Divergence Theorem

  1. Use the Divergence Theorem to evaluate SFdS where F=yx2i+(xy23z4)j+(x3+y2)k and S is the surface of the sphere of radius 4 with z0 and y0. Note that all three surfaces of this solid are included in S. Solution
  2. Use the Divergence Theorem to evaluate SFdS where F=sin(πx)i+zy3j+(z2+4x)k and S is the surface of the box with 1x2, 0y1 and 1z4. Note that all six sides of the box are included in S. Solution
  3. Use the Divergence Theorem to evaluate SFdS where F=2xzi+(14xy2)j+(2zz2)k and S is the surface of the solid bounded by z=62x22y2 and the plane z=0 . Note that both of the surfaces of this solid included in S. Solution